Fatty Acid Amide Hydrolase: A Gate-Keeper of the Endocannabinoid System

  • Filomena Fezza
  • Chiara De Simone
  • Daniele Amadio
  • Mauro Maccarrone
Part of the Subcellular Biochemistry book series (SCBI, volume 49)


The family of endocannabinoids contains several polyunsaturated fatty acid amides such as anandamide (AEA), but also esters such as 2-arachidonoylglycerol (2-AG). These compounds are the main endogenous agonists of cannabinoid receptors, able to mimic several pharmacological effects of Δ9-tetrahydrocannabinol (Δ9-THC), the active principle of Cannabis sativa preparations like hashish and marijuana. The activity of AEA at its receptors is limited by cellular uptake, through a putative membrane transporter, followed by intracellular degradation by fatty acid amide hydrolase (FAAH). Growing evidence demonstrates that FAAH is the critical regulator of the endogenous levels of AEA, suggesting that it may serve as an attractive therapeutic target for the treatment of human disorders. In particular, FAAH inhibitors may be next generation therapeutics of potential value for the treatment of pathologies of the central nervous system, and of peripheral tissues. Investigations into the structure and function of FAAH, its biological and therapeutic implications, as well as a description of different families of FAAH inhibitors, are the topic of this chapter.


Cannabinoids Endocannabinoid system FAAH Gene expression inhibitor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, I. B. and Martin, B. R., Cannabis: pharmacology and toxicology in animals and humans, Addiction, 91 (1996) 1585–1614.PubMedGoogle Scholar
  2. Aberle, J., Fedderwitz, I., Klages, N., George, E. and Beil, F. U., Genetic variation in two proteins of the endocannabinoid system and their influence on body mass index and metabolism under low fat diet, Horm Metab Res, 39 (2007) 395–397.PubMedGoogle Scholar
  3. Aguado, T., Carracedo, A., Julien, B., Velasco, G., Milman, G., Mechoulam, R., Alvarez, L., Guzmán, M. and Galve-Roperh, I., Cannabinoids induce glioma stem-like cell differentiation and inhibit gliomagenesis, J Biol Chem, 282 (2007) 6854–6862.PubMedGoogle Scholar
  4. Ahn, K., Johnson, D. S., Fitzgerald, L. R., Liimatta, M., Arendse, A., Stevenson, T., Lund, E. T., Nugent, R. A., Nomanbhoy, T. K., Alexander, J. P. and Cravatt, B. F., Novel mechanistic class of fatty acid amide hydrolase inhibitors with remarkable selectivity, Biochemistry, 46 (2007) 13019–13030.PubMedGoogle Scholar
  5. Alexander, J. P. and Cravatt, B. F., Mechanism of carbamate inactivation of FAAH: implications for the design of covalent inhibitors and in vivo functional probes for enzymes, Chem Biol, 12 (2005) 1179–1187.PubMedGoogle Scholar
  6. Arreaza, G. and Deutsch, D. G., Deletion of a proline-rich region and a transmembrane domain in fatty acid amide hydrolase, FEBS Lett, 454 (1999) 57–60.PubMedGoogle Scholar
  7. Baker, D., Pryce, G., Davies, W. L. and Hiley, C. R., In silico patent searching reveals a new cannabinoid receptor, Trends Pharmacol Sci, 1 (2006) 1–4.Google Scholar
  8. Bari, M., Battista, N., Fezza, F., Finazzi Agrò, A. and Maccarrone, M., Lipid rafts control signaling of type-1 cannabinoid receptors in neuronal cells. Implications for anandamide-induced apoptosis, J Biol Chem, 280 (2005) 12212–12220.PubMedGoogle Scholar
  9. Battista, N., Bari, M., Tarditi, A., Mariotti, C., Bachoud-Lévi, A. C., Zuccato, C., Finazzi-Agrò, A., Genitrini, S., Peschanski, M., Di Donato, S., Cattaneo, E. and Maccarrone, M., Severe deficiency of the fatty acid amide hydrolase (FAAH) activity segregates with the Huntington's disease mutation in peripheral lymphocytes, Neurobiol Dis, 27 (2007) 108–116.PubMedGoogle Scholar
  10. Beltramo, M. and Piomelli, D., Carrier-mediated transport and enzymatic hydrolysis of the endogenous cannabinoid 2-arachidonylglycerol, Neuroreport, 11 (2000) 1231–1235.PubMedGoogle Scholar
  11. Benito, C., Núñez, E., Tolón, R. M., Carrier, E. J., Rábano, A., Hillard, C. J. and Romero, J., Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer's disease brains, J Neurosci, 23 (2003) 11136–11141.PubMedGoogle Scholar
  12. Ben-Shabat, S., Fride, E., Sheskin, T., Tamiri, T., Rhee, M. H., Vogel, Z., Bisogno, T., De Petrocellis, L., Di Marzo, V. and Mechoulam, R., An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity, Eur J Pharmacol, 353 (1998) 23–31.PubMedGoogle Scholar
  13. Bisogno, T., Berrendero, F., Ambrosino, G., Cebeira, M., Ramos, J. A., Fernandez-Ruiz, J. J. and Di Marzo, V., Brain regional distribution of endocannabinoids: implications for their biosynthesis and biological function, Biochem Biophys Res Commun, 256 (1999a) 377–380.Google Scholar
  14. Bisogno, T., Melck, D., De Petrocellis, L. and Di Marzo, V., Phosphatidic acid as the biosynthetic precursor of the endocannabinoid 2-arachidonoylglycerol in intact mouse neuroblastoma cells stimulated with ionomycin, J Neurochem, 72 (1999b) 2113–2119.Google Scholar
  15. Bisogno, T., Hanus, L., De Petrocellis, L., Tchilibon, S., Ponde, D. E., Brandi, I., Moriello, A. S., Davis, J. B., Mechoulam, R. and Di Marzo, V., Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide, Br J Pharmacol, 134 (2001a) 845–852.Google Scholar
  16. Bisogno, T., Maccarrone, M., De Petrocellis, L., Jarrahian, A., Finazzi-Agro, A., Hillard, C. and Di Marzo, V., The uptake by cells of 2-arachidonoylglycerol, an endogenous agonist of cannabinoid receptors, Eur J Biochem, 268 (2001b) 1982–1989.Google Scholar
  17. Bisogno, T., Howell, F., Williams, G., Minassi, A., Cascio, M. G., Ligresti, A., Matias, I., Schiano-Moriello, A., Paul, P., Williams, E. J., Gangadharan, U., Hobbs, C., Di Marzo, V. and Doherty, P., Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain, J Cell Biol, 163 (2003) 463–468.PubMedGoogle Scholar
  18. Boger, D. L., Sato, H., Lerner, A. E., Hedrick, M. P., Fecik, R. A., Miyauchi, H., Wilkie, G. D., Austin, B. J., Patricelli, M. P. and Cravatt, B. F., Exceptionally potent inhibitors of fatty acid amide hydrolase: the enzyme responsible for degradation of endogenous oleamide and anandamide, Proc Natl Acad Sci U S A, 97 (2000) 5044–5049.PubMedGoogle Scholar
  19. Boger, D. L., Miyauchi, H. and Hedrick, M. P., Alpha-Keto heterocycle inhibitors of fatty acid amide hydrolase: carbonyl group modification and alpha-substitution, Bioorg Med Chem Lett, 11 (2001) 1517–1520.PubMedGoogle Scholar
  20. Boger, D.L., Miyauchi, H., Du, W., Hardouin, C., Fecik, R. A., Cheng, H., Hwang, I., Hedrick, M. P., Leung, D., Acevedo, O., Guimarães, C. R., Jorgensen, W. L. and Cravatt, B. F., Discovery of a potent, selective, and efficacious class of reversible alpha-ketoheterocycle inhibitors of fatty acid amide hydrolase effective as analgesics, J Med Chem, 48 (2005) 1849–1856.PubMedGoogle Scholar
  21. Börner, C., Höllt, V., Sebald, W. and Kraus, J., Transcriptional regulation of the cannabinoid receptor type 1 gene in T cells by cannabinoids, J Leukoc Biol, 81 (2007) 336–343.PubMedGoogle Scholar
  22. Borovecki, F., Lovrecic, L., Zhou, J., Jeong, H., Then, F., Rosas, H. D., Hersch, S. M., Hogarth, P., Bouzanou, B., Jensen, R. V., Krainc, D., Genome-wide expression profiling of human blood reveals biomarkers for Huntington’s disease, Proc Natl Acad Sci U S A, 102 (2005) 11023–11028.PubMedGoogle Scholar
  23. Bracey, M. H., Hanson, M. A., Masuda, K. R., Stevens, R. C. and Cravatt, B. F., Structural adaptations in a membrane enzyme that terminates endocannabinoid signaling, Science, 298 (2002) 1793–1796.PubMedGoogle Scholar
  24. Bracey, M. H., Cravatt, B. F. and Stevens, R. C., Structural commonalities among integral membrane enzymes, FEBS Lett, 567 (2004) 159–165.PubMedGoogle Scholar
  25. Burstein, S. H., Huang, S. M., Petros, T. J., Rossetti, R. G., Walker, J. M. and Zurier, R. B., Regulation of anandamide tissue levels by N-arachidonylglycine, Biochem Pharmacol, 64 (2002) 1147–1150.PubMedGoogle Scholar
  26. Caillé, S., Alvarez-Jaimes, L., Polis, I., Stouffer, D. G. and Parsons, L. H., Specific alterations of extracellular endocannabinoid levels in the nucleus accumbens by ethanol, heroin, and cocaine self-administration, J Neurosci, 27 (2007) 3695–3702.PubMedGoogle Scholar
  27. Centonze, D., Bari, M., Rossi, S., Prosperetti, C., Furlan, R., Fezza, F., De Chiara, V., Battistini, L., Bernardi, G., Bernardini, S., Martino, G. and Maccarrone, M., The endocannabinoid system is dysregulated in multiple sclerosis and in experimental autoimmune encephalomyelitis, Brain, 130 (2007a) 2543–2553.Google Scholar
  28. Centonze, D., Finazzi-Agrò, A., Bernardi, G. and Maccarrone, M., The endocannabinoid system in targeting inflammatory neurodegenerative diseases, Trends Pharmacol Sci, 28 (2007b) 180–187.Google Scholar
  29. Chebrou, H., Bigey, F., Arnaud, A. and Galzy, P., Study of the amidase signature group. Biochim Biophys Acta, 1298 (1996) 285–293.PubMedGoogle Scholar
  30. Chiang, K. P., Gerber, A. L., Sipe, J. C. and Cravatt, B. F., Reduced cellular expression and activity of the P129T mutant of human fatty acid amide hydrolase: evidence for a link between defects in the endocannabinoid system and problem drug use, Hum Mol Genet, 13 (2004) 2113–2119.PubMedGoogle Scholar
  31. Cravatt, B. F., Giang, D. K., Mayfield, S. P., Boger, D. L., Lerner, R. A. and Gilula, N. B., Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides, Nature, 384 (1996) 83–87.PubMedGoogle Scholar
  32. Cravatt, B. F. and Lichtman, A. H., The enzymatic inactivation of the fatty acid amide class of signaling lipids, Chem Phys Lipids, 121 (2002) 135–148.PubMedGoogle Scholar
  33. Cravatt, B. F. and Lichtman, A. H., Fatty acid amide hydrolase: an emerging therapeutic target in the endocannabinoid system, Curr Opin Chem Biol, 7 (2003) 469–475.PubMedGoogle Scholar
  34. Cupini, L. M., Bari, M., Battista, N., Argirò, G., Finazzi-Agrò, A., Calabresi, P. and Maccarrone, M., tBiochemical changes in endocannabinoid system are expressed in platelets of female but not male migraineurs, Cephalalgia, 26 (2006) 277–281.PubMedGoogle Scholar
  35. Day, T. A., Rakhshan, F., Deutsch, D. G. and Barker, E. L., Role of fatty acid amide hydrolase in the transport of the endogenous cannabinoid anandamide, Mol Pharmacol, 59 (2001) 1369–1375.PubMedGoogle Scholar
  36. De Petrocellis, L., Melck, D., Ueda, N., Maurelli, S., Kurahashi, Y., Yamamoto, S., Marino, G. and Di Marzo, V., Novel inhibitors of brain, neuronal and basophilic anandamide amidohydrolase, Biochem Biophys Res Commun, 231 (1997) 82–88.PubMedGoogle Scholar
  37. De Petrocellis, L., Cascio, M. G. and Di Marzo, V., The endocannabinoid system: a general view and latest additions, Br J Pharmacol, 141 (2004) 765–774.PubMedGoogle Scholar
  38. Desarnaud, F., Cadas, H. and Piomelli, D., Anandamide amidohydrolase activity in rat brain microsomes. Identification and partial characterization, J Biol Chem, 270 (1995) 6030–6035.PubMedGoogle Scholar
  39. Deutsch, D. G. and Chin, S. A., Enzymatic synthesis and degradation of anandamide, a cannabinoid receptor agonist, Biochem, 46 (1993) 791–796.Google Scholar
  40. Deutsch, D. G., Lin, S., Hill, W. A., Morse, K. L., Salehani, D., Arreaza, G., Omeir, R. L. and Makriyannis, A., Fatty acid sulfonyl fluorides inhibit anandamide metabolism and bind to the cannabinoid receptor, Biochem Biophys Res Commun, 231 (1997a) 217–221.Google Scholar
  41. Deutsch, D. G., Omeir, R., Arreaza, G., Salehani, D., Prestwich, G. D., Huang, Z. and Howlett, A., Methyl arachidonyl fluorophosphonate: a potent irreversible inhibitor of anandamide amidase, Biochem Pharmacol, 53 (1997b) 255–260.Google Scholar
  42. Devane, W. A., Dysarz, F. A., Johnson, M. R., Melvin, L. S. and Howlett, A. C., Determination and characterisation of a cannabinoid receptor in rat brain, Mol Pharmacol, 34 (1988) 605–613.PubMedGoogle Scholar
  43. Devane, W. A., Hannus, L., Breuer, A., Pertwee, R. G., Stevenson, L. A., Griffin, G., Gibson, D., Mandelbaum, A., Etinger, A. and Mechoulam, R., Isolation and structure of a brain constituent that binds to the cannabinoid receptor, Science, 258 (1992) 1946–1949.PubMedGoogle Scholar
  44. Dewey, W. L., Cannabinoid pharmacology, Pharmacol Rev, 38 (1986) 151–178.PubMedGoogle Scholar
  45. Di Marzo, V., Fontana, A., Cadas, H., Schinelli, S., Cimino, G., Schwartz, J. C. and Pomelli, D., Formation and inactivation of endogenous cannabinoid anandamide in central neurons, Nature, 372 (1994) 686–691.PubMedGoogle Scholar
  46. Di Marzo, V. and Deutsch, D. G., Biochemistry of the endogenous ligands of cannabinoid receptors, Neurobiol Dis, 5 (1998) 386–404.PubMedGoogle Scholar
  47. Di Marzo, V., Bisogno, T., De Petrocellis, L., Melck, D., Orlando, P. and Wagner, J. A., Biosynthesis and inactivation of the endocannabinoid 2-arachidonoylglycerol in circulating and tumoral macrophages, Eur J Biochem, 264 (1999) 258–267.PubMedGoogle Scholar
  48. Di Marzo, V., Hill, M. P., Bisogno, T., Crossman, A. R. and Brotchie, J. M., Enhanced levels of endogenous cannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of Parkinson's disease, FASEB J, 14 (2000) 1432–1438.PubMedGoogle Scholar
  49. Dinh, T. P., Carpenter, D., Leslie, F. M., Freund, T. F., Katona, I., Sensi, S. L., Kathuria, S. and Piomelli, D., Brain monoglyceride lipase participating in endocannabinoid inactivation, Proc Natl Acad Sci USA, 99 (2002) 10819–10824.PubMedGoogle Scholar
  50. Dinh, T. P., Kathuria, S. and Piomelli, D., RNA interference suggests a primary role for monoacylglycerol lipase in the degradation of the endocannabinoid 2-arachidonoylglycerol, Mol Pharmacol, 66 (2004) 1260–1264.PubMedGoogle Scholar
  51. Edgemond, W. S., Greenberg, M. J., McGinley, P. J., Muthian, S., Campbell, W. B. and Hillard, C. J., Synthesis and characterization of diazomethylarachidonyl ketone: an irreversible inhibitor of N-arachidonylethanolamine amidohydrolase, J Pharmacol Exp Ther, 286 (1998) 184–190.PubMedGoogle Scholar
  52. Edwards, P. D., Zottola, M. A., Davis, M., Williams, J. and Tuthill, P. A., Peptidyl alpha-ketoheterocyclic inhibitors of human neutrophil elastase. 3. In vitro and in vivo potency of a series of peptidyl alpha-ketobenzoxazoles, J Med Chem, 38 (1995) 3972–3982.PubMedGoogle Scholar
  53. Fegley, D., Kathuria, S., Mercier, R., Li, C., Goutopoulos, A., Makriyannis, A. and Piomelli, D., Anandamide transport is independent of fatty-acid amide hydrolase activity and is blocked by the hydrolysis-resistant inhibitor AM1172, Proc Natl Acad Sci U S A, 101 (2004) 8756–8761.PubMedGoogle Scholar
  54. Felder, C. C., Nielsen, A., Briley, E. M., Palkovits, M., Priller, J., Axelrod, J., Nguyen, D. N., Richardson, J. M., Riggin, R. M., Koppel, G. A., Paul, S. M. and Becker, G. W., Isolation and measurement of the endogenous cannabinoid receptor agonist, anandamide, in brain and peripheral tissues of human and rat, FEBS Lett, 393 (1996) 231–235.PubMedGoogle Scholar
  55. Fersht, A. R., Acyl-transfer reactions of amides and esters with alcohols and thiols. A reference system for the serine and cysteine proteinases, Concerning the N protonation of amides and amide-imidate equilibria, J Am Chem Soc, 93 (1971) 3504–3515.PubMedGoogle Scholar
  56. Fowler, C. J., Plant-derived, synthetic and endogenous cannabinoidsas neuroprotective agents. Non-psychoactive cannabinoids,‘entourage’ compounds and inhibitors of N-acyl ethanolamine breakdown as therapeutic strategies to avoid psychotropic effects, Brain Res Rev, 41 (2003) 26–43.PubMedGoogle Scholar
  57. Gaetani, S., Cuomo, V. and Piomelli, D., Anandamide hydrolysis: a new target for anti-anxiety drugs?, Trends Mol Med 9 (2003) 474–478.PubMedGoogle Scholar
  58. Giang, D. K. and Cravatt, B. F., Molecular characterization of human and mouse fatty acid amide hydrolases, Proc Natl Acad Sci U S A, 94 (1997) 2238–2242.PubMedGoogle Scholar
  59. Glaser, S. T., Abumrad, N. A., Fatade, F., Kaczocha, M., Studholme, K. M. and Deutsch, D. G., Evidence against the presence of an anandamide transporter, Proc Natl Acad Sci U S A, 100 (2003) 4269–4274.PubMedGoogle Scholar
  60. Goparaju, S. K., Ueda, N., Taniguchi, K. and Yamamoto, S., Enzymes of porcine brain hydrolyzing 2-arachidonoylglycerol, an endogenous ligand of cannabinoid receptors, Biochem Pharmacol, 57 (1999a) 417–423.Google Scholar
  61. Goparaju, S. K., Kurahashi, Y., Suzuki, H., Ueda, N. and Yamamoto, S., Anandamide amidohydrolase of porcine brain:cDNA cloning, functional expression and site-directed mutagenesis, Biochim Biophys Acta, 1441 (1999b) 77–84.Google Scholar
  62. Gubellini, P., Picconi, B., Bari, M., Battista, N., Calabresi, P., Centonze, D., Bernardi, G., Finazzi-Agrò, A. and Maccarrone, M., Experimental parkinsonism alters endocannabinoid degradation: implications for striatal glutamatergic transmission, J Neurosci, 22 (2002) 6900–6907.PubMedGoogle Scholar
  63. Gulyas, A. I., Cravatt, B. F., Bracey, M. H., Dinh, T. P., Piomelli, D., Boscia, F. and Freund, T. F., Segregation of two endocannabinoid-hydrolyzing enzymes into preand postsynaptic compartments in the rat hippocampus, cerebellum and amygdale, Eur J Neurosci, 20 (2004) 441–458.PubMedGoogle Scholar
  64. Guo, Y., Wang, H., Okamoto, Y., Ueda, N., Kingsley, P. J., Marnett, L. J., Schmid, H. H., Das, S. K. and Dey, S. K., N-acylphosphatidylethanolamine-hydrolyzing phospholipase D is an important determinant of uterine anandamide levels during implantation, J Biol Chem, 280 (2005) 23429–23432.PubMedGoogle Scholar
  65. Hanus, L., Abu-Lafi, S., Fride, E., Breuer, A., Vogel, Z., Shalev, D. E., Kustanovich, I. and Mechoulam, R. 2-Arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor, Proc Natl Acad Sci U S A, 98 (2001) 3662–3665.PubMedGoogle Scholar
  66. Howlett, A. C. and Fleming, R. M., Cannabinoid inhibition of adenylate cyclase. Pharmacology of the response in neuroblastoma cell membranes, Mol Pharmacol, 26 (1984) 532–528.PubMedGoogle Scholar
  67. Howlett, A. C., Barth, F., Bonner, T. I., Cabral, G., Casellas, P., Devane, W. A., Felder, C. C., Herkenham, M., Mackie, K., Martin, B. R., Mechoulam, R. and Pertwee, R. G., International Union of Pharmacology. XXVII. Classification of cannabinoid receptors, Pharmacol Rev, 54 (2002) 161–202.PubMedGoogle Scholar
  68. Huang, S. M., Bisogno, T., Petros, T. J., Chang, S. Y., Zavitsanos, P. A., Zipkin, R. E., Sivakumar, R., Coop, A., Maeda, D. Y., De Petrocellis, L., Burstein, S., Di Marzo, V. and Walker, J. M., Identification of a new class of molecules, the arachidonyl amino acids, and characterization of one member that inhibits pain, J Biol Chem, 276 (2001) 42639–42644.PubMedGoogle Scholar
  69. Ide, K., Nukina, N., Masuda, N., Goto, J., Kanazawa, I., Abnormal gene product identified in Huntington’s disease lymphocytes and brain, Biochem Biophys Res Commun, 209 (1995) 1119–1125.PubMedGoogle Scholar
  70. Jordt, S. E. and Julius, D., Molecular basis for species-specific sensitivity to "hot" chili peppers, Cell, 108 (2002) 421–430.PubMedGoogle Scholar
  71. Jung, J., Hwang, S. W., Kwak, J., Lee, S. Y., Kang, C. J., Kim, W. B., Kim, D. and Oh, U., Capsaicin binds to the intracellular domain of the capsaicin-activated ion channel, J Neurosci, 19 (1999) 529–538.PubMedGoogle Scholar
  72. Kathuria, S., Gaetani, S., Fegley, D., Valiño, F., Duranti, A., Tontini, A., Mor, M., Tarzia, G., La Rana, G., Calignano, A., Giustino, A., Tattoli, M., Palmery, M., Cuomo, V. and Piomelli, D., Modulation of anxiety through blockade of anandamide hydrolysis, Nat Med, 9 (2003) 76–81.PubMedGoogle Scholar
  73. Labahn, J., Neumann, S., Büldt, G., Kula, M. R. and Granzin, J., An alternative mechanism for amidase signature enzymes, J Mol Biol, 322 (2002) 1053–1064.PubMedGoogle Scholar
  74. Lauckner, J. E., Hille, B. and Mackie, K., The cannabinoid agonist WIN55,212-2 increases intracellular calcium via CB1 receptor coupling to Gq/11 G proteins, Proc Natl Acad Sci U S A, 102 (2005) 19144–19149.PubMedGoogle Scholar
  75. Leung, D., Saghatelian, A., Simon, G. M. and Cravatt, B. F., Inactivation of N-acyl phosphatidylethanolamine phospholipase D reveals multiple mechanisms for the biosynthesis of endocannabinoids, Biochemistry, 45 (2006) 4720–4726.PubMedGoogle Scholar
  76. Lichtman, A. H., Hawkins, E. G., Griffin, G. and Cravatt, B. F., Pharmacological activity of fatty acid amides is regulated, but not mediated, by fatty acid amide hydrolase in vivo, J Pharmacol Exp Ther, 302 (2002) 73–79.PubMedGoogle Scholar
  77. Lichtman, A. H., Leung, D., Shelton, C. C., Saghatelian, A., Hardouin, C., Boger, D. L. and Cravatt, B. F., Reversible inhibitors of fatty acid amide hydrolase that promote analgesia: evidence for an unprecedented combination of potency and selectivity, J Pharmacol Exp Ther, 311 (2004) 441–448.PubMedGoogle Scholar
  78. Ligresti, A., Morera, E., Van Der Stelt, M., Monory, K., Lutz, B., Ortar, G. and Di Marzo, V., Further evidence for the existence of a specific process for the membrane transport of anandamide, Biochem J, 380 (2004) 265–272.PubMedGoogle Scholar
  79. Liu, J., Wang, L., Harvey-White, J., Osei-Hyiaman, D., Razdan, R., Gong, Q., Chan, A. C., Zhou, Z., Huang, B. X., Kim, H. Y. and Kunos, G., A biosynthetic pathway for anandamide, Proc Natl Acad Sci U S A, 103 (2006) 13345–13350.PubMedGoogle Scholar
  80. López-Rodríguez, M. L., Viso, A., Ortega-Gutiérrez, S., Lastres-Becker, I., González, S., Fernández-Ruiz, J. and Ramos, J. A., Design, synthesis and biological evaluation of novel arachidonic acid derivatives as highly potent and selective endocannabinoid transporter inhibitors, J Med Chem, 44 (2001) 4505–4508.PubMedGoogle Scholar
  81. Lunn, C. A., Reich, E. P. and Bober, L., Targeting the CB2 receptor for immune modulation, Expert Opin Ther Targets, 5 (2006) 653–663.Google Scholar
  82. Maccarrone, M., Fatty acid amide hydrolase: a potential target for next generation therapeutics, Curr Pharm Des, 12 (2006) 759–772.PubMedGoogle Scholar
  83. *******Maccarrone, M. and Finazzi-Agrò, A., Anandamide hydrolase: a guardian angel of human reproduction?, Trends Pharmacol Sci, 25 (2004a) 353–357.Google Scholar
  84. Maccarrone, M., van der Stelt, M., Rossi, A., Veldink, G. A., Vliegenthart, J. F. and Finazzi-Agrò A., Anandamide hydrolysis by human cells in culture and brain, J Biol Chem, 273 (1998) 32332–32339.PubMedGoogle Scholar
  85. Maccarrone, M., De Felici, M., Bari, M., Klinger, F., Siracusa, G. and Finazzi-Agro, A., Down-regulation of anandamide hydrolase in mouse uterus by sex hormones, Eur J Biochem, 267 (2000a) 2991–2997.Google Scholar
  86. Maccarrone, M., Valensise, H., Bari, M., Lazzarin, N., Romanini, C. and Finazzi-Agrò, A., Relation between decreased anandamide hydrolase concentrations in human lymphocytes and miscarriage, Lancet, 355 (2000b) 1326–1329.Google Scholar
  87. Maccarrone, M., Valensise, H., Bari, M., Lazzarin, N., Romanini, C. and Finazzi-Agrò, A., Progesterone up-regulates anandamide hydrolase in human lymphocytes: role of cytokines and implications for fertility, J Immunol, 166 (2001) 7183–7189.PubMedGoogle Scholar
  88. Maccarrone, M., Di Rienzo, M., Finazzi-Agrò, A. and Rossi, A., Leptin activates the anandamide hydrolase promoter in human T lymphocytes through STAT3, J Biol Chem, 278 (2003a) 13318–13324.Google Scholar
  89. Maccarrone, M., Bari, M., Di Rienzo, M., Finazzi-Agro, A. and Rossi, A., Progesterone activates fatty acid amide hydrolase (FAAH) promoter in human T lymphocytes through the transcription factor Ikaros, Evidence for a synergistic effect of leptin, J Biol Chem, 278 (2003b) 32726–32732.Google Scholar
  90. Maccarrone, M., Gasperi, V., Fezza, F., Finazzi-Agro, A. and Rossi, A., Differential regulation of fatty acid amide hydrolase promoter in human immune cells and neuronal cells by leptin and progesterone, Eur J Biochem, 271 (2004b) 4666–4676.Google Scholar
  91. Martin, B. R., Beletskaya, I., Patrick, G., Jefferson, R., Winckler, R., Deutsch, D. G., Di Marzo, V., Dasse, O., Mahadevan, A. and Razdan, R. K., Cannabinoid properties of methylfluorophosphonate analogs, J Pharmacol Exp Ther, 294 (2000) 1209–1218.PubMedGoogle Scholar
  92. Matias, I., Chen, J., De Petrocellis, L., Bisogno, T., Ligresti, A., Fezza, F., Krauss, A. H., Shi, L., Protzman, C. E., Li, C., Liang, Y., Nieves, A. L., Kedzie, K. M., Burk, R. M., Di Marzo, V. and Woodward, D. F., Prostaglandin ethanolamides (prostamides): in vitro pharmacology and metabolism, J Pharmacol Exp Ther, 309 (2004) 745–757.PubMedGoogle Scholar
  93. Maurelli, S., Bisogno, T., De Petrocellis, L., Di Luccia, A., Marino, G. and Di Marzo, V., Two novel classes of neuroactive fatty acid amides are substrates for mouse neuroblastoma 'anandamide amidohydrolase', FEBS Lett, 377 (1995) 82–86.PubMedGoogle Scholar
  94. McFarland, M. J., Porter, A. C., Rakhshan, F. R., Rawat, D. S., Gibbs, R. A. and Barker, E. L., A role for caveolae/lipid rafts in the uptake and recycling of the endogenous cannabinoid anandamide, J Biol Chem, 279 (2004) 41991–41997.PubMedGoogle Scholar
  95. McKinney, M. K. and Cravatt, B. F., Structure and function of fatty acid amide hydrolase, Annu Rev Biochem, 74 (2005) 411–432.PubMedGoogle Scholar
  96. McPartland, J. M., Matias, I., Di Marzo, V. and Glass, M., Evolutionary origins of the endocannabinoid system, Gene, 370 (2006) 64–74.PubMedGoogle Scholar
  97. Mechoulam, R., Ben-Shabat, S., Hanus, L., Ligumsky, M., Kaminski, N. E., Schatz, A. R., Gopher, A., Almog, S., Martin, B. R., Compton, D. R., Pertwee, R. G., Griffine, G., Bayewitchf, M., Bargf, J. and Vogelf, Z., Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors, Biochem Pharmacol, 50 (1995) 83–90.PubMedGoogle Scholar
  98. Mechoulam, R., Panikashvili, D. and Shohami, E., Cannabinoids and brain injury: therapeutic implications, Trends Mol Med, 8 (2002) 58–61.PubMedGoogle Scholar
  99. Mei, G., Di Venere, A., Gasperi, V., Nicolai, E., Masuda, K. R., Finazzi-Agrò, A., Cravatt, B. F. and Maccarrone, M., Closing the gate to the active site: effect of the inhibitor methoxyarachidonyl fluorophosphonate on the conformation and membrane binding of fatty acid amide hydrolase, J Biol Chem, 282 (2007) 3829–3836.PubMedGoogle Scholar
  100. Mor, M., Rivara, S., Lodola, A., Plazzi, P. V., Tarzia, G., Duranti, A., Tontini, A., Piersanti, G., Kathuria, S. and Piomelli, D., Cyclohexylcarbamic acid 3’- or 4’-substituted biphenyl-3-yl esters as fatty acid amide hydrolase inhibitors: Synthesis, quantitative structure-activity relationships, and molecular modeling studies, J Med Chem, 47 (2004) 4998–5008.PubMedGoogle Scholar
  101. Muccioli, G. G., Xu, C., Odah, E., Cudaback, E., Cisneros, J. A., Lambert, D. M., López Rodríguez, M. L., Bajjalieh, S. and Stella, N., Identification of a novel endocannabinoid-hydrolyzing enzyme expressed by microglial cells, J Neurosci, 27 (2007) 2883–2889.PubMedGoogle Scholar
  102. Munro, S., Thomas, K. L. and Abu-Shaar, M., Molecular characterization of a peripheral receptor for cannabinoids, Nature, 365 (1993) 61–65.PubMedGoogle Scholar
  103. Norrod, A. G. and Puffenbarger, R. A., Genetic polymorphisms of the endocannabinoid system, Chem Biodivers, 4 (2007) 1926–1932.PubMedGoogle Scholar
  104. Oddi, S., Bari, M., Battista, N., Barsacchi, D., Cozzani, I. and Maccarrone, M., Confocal microscopy and biochemical analysis reveal spatial and functional separation between anandamide uptake and hydrolysis in human keratinocytes, Cell Mol Life Sci, 62 (2005) 386–395.PubMedGoogle Scholar
  105. Oka, S., Tsuchie, A., Tokumura, A., Muramatsu, M., Suhara, Y., Takayama, H., Waku, K., and Sugiura, T., Ether-linked analogue of 2-arachidonoylglycerol (noladin ether) was not detected in the brains of various mammalian species, J Neurochem, 85 (2003) 1374–1381.PubMedGoogle Scholar
  106. Okamoto, Y., Morishita, J., Tsuboi, K., Tonai, T. and Ueda, N., Molecular characterization of a phospholipase D generating anandamide and its congeners, J Biol Chem, 279 (2004), 5298–5305.PubMedGoogle Scholar
  107. Ortar, G., Ligresti, A., De Petrocellis, L., Morera, E. and Di Marzo, V., Novel selective and metabolically stable inhibitors of anandamide cellular uptake, Biochem Pharmacol, 65 (2003) 1473–1481.PubMedGoogle Scholar
  108. Paria, B. C., Deutsch, D. G. and Dey, S. K., The uterus is a potential site for anandamide synthesis and hydrolysis: differential profiles of anandamide synthase and hydrolase activities in the mouse uterus during the preiimplantation period, Mol Reprod Dev, 45 (1996) 183–192.PubMedGoogle Scholar
  109. Paria, B. C., Zhao, X., Wang, J., Das, S. K. and Dey, S. K., Fatty-acid amide hydrolase is expressed in the mouse uterus and embryo during the preiimplantation period, Biol Repro, 60 (1999) 1151–1157.Google Scholar
  110. Park, B., Gibbons, H. M., Mitchell, M. D. and Glass, M., Identification of the CB1 cannabinoid receptor and fatty acid amide hydrolase (FAAH) in the human placenta, Placenta, 24 (2003) 990–995.PubMedGoogle Scholar
  111. Patricelli, M. P. and Cravatt, B. F., Fatty acid amide hydrolase competitively degrades bioactive amides and esters through a non conventional catalytic mechanism, Biochemistry, 38 (1999) 14125–14130.PubMedGoogle Scholar
  112. Patricelli, M. P., Lashuel, H. A., Giang, D. K., Kelly, J. W. and Cravatt, B.F., Comparative characterization of a wild type and transmembrane domain-deleted fatty acid amide hydrolase: identification of the transmembrane domain as a site for oligomerization, Biochemistry, 37(43): (1998) 15177–15187.PubMedGoogle Scholar
  113. Patricelli, M. P., Lovato, M. A. and Cravatt, B. F., Chemical and mutagenic investigations of fatty acid amide hydrolase: evidence for a family of serine hydrolases with distinct catalytic properties, Biochemistry, 38 (1999) 9804–9812.PubMedGoogle Scholar
  114. Picot, D., Loll, P. J. and Garavito, R. M., The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1, Nature, 367 (1994) 243–249.PubMedGoogle Scholar
  115. Piomelli, D., The molecular logic of endocannabinoid signalling, Nature Rev Neurosci, 4 (2003) 873–884.Google Scholar
  116. Piomelli, D., Beltramo, M., Giuffrida, A. and Stella, N., Endogenous cannabinoid signaling, Neurobiol Dis, 6 (1998) 462–473.Google Scholar
  117. Piomelli, D., Giuffrida, A., Calignano, A. and de Fonseca, F. R., The endocannabinoid system as a target for therapeutic drugs, Trends Pharmacol Sci, 21 (2000) 218–224.PubMedGoogle Scholar
  118. Piomelli, D., Tarzia, G., Duranti, A., Tontini, A., Mor, M., Compton, T. R., Dasse, O., Monaghan, E. P., Parrott, J. A. and Putman, D., Pharmacological profile of the selective FAAH inhibitor KDS-4103 (URB597), CNS Drug Rev, 12 (2006) 21–38.PubMedGoogle Scholar
  119. Porter, A. C., Sauer, J. M., Knierman, M. D., Becker, G. W., Berna, M. J., Bao, J., Nomikos, G. G., Carter, P., Bymaster, F. P., Leese, A. B. and Felder, C. C., Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the CB1 receptor, J Pharmacol Exp Ther, 301 (2002) 1020–1024.PubMedGoogle Scholar
  120. Puffenbarger, R. A., Kapulina, O., Howell, J. M. and Deutsch, D. G., Characterization of the 5'-sequence of the mouse fatty acid amide hydrolase, Neurosci Lett, 314 (2001) 21–24.PubMedGoogle Scholar
  121. Ross, S. A. and Elsohly, M. A., The volatile oil composition of fresh and air-dried buds of Cannabis sativa, J Nat Prod, 59 (1996) 49–51.PubMedGoogle Scholar
  122. Rossi, C., Pini, L. A., Cupini, M. L., Calabresi, P. and Sarchielli, P., Endocannabinoids in platelets of chronic migraine patients and medication-overuse headache patients: relation with serotonin levels, Eur J Clin Pharmacol, (2007) Nov 15, in press.Google Scholar
  123. Ryberg, E., Larsson, N., Sjögren, S., Hjorth, S., Hermansson, N. O., Leonova, J., Elebring, T., Nilsson, K., Drmota, T. and Greasley, P. J., The orphan receptor GPR55 is a novel cannabinoid receptor, Br J Pharmacol, 152 (2007) 1092–1101.PubMedGoogle Scholar
  124. Sawzdargo, M., Nguyen, T., Lee, D. K., Lynch, K. R., Cheng, R., Heng, H. H., George, S. R. and O'Dowd, B. F., Identification and cloning of three novel human G protein-coupled receptor genes GPR52, PsiGPR53 and GPR55: GPR55 is extensively expressed in human brain, Brain Res Mol Brain Res, 64 (1999) 193–198.PubMedGoogle Scholar
  125. Segall, Y., Quistad, G. B., Nomura, D. K. and Casida, J. E., Arachidonylsulfonyl derivatives as cannabinoid CB1 receptor and fatty acid amide hydrolase inhibitors, Bioorg Med Chem Lett, 13 (2003) 3301–3303.PubMedGoogle Scholar
  126. Shin, S., Lee, T. H., Ha, N. C., Koo, H. M., Kim, S. Y., Lee, H. S., Kim, Y. S. and Oh, B. H., Structure of malonamidase E2 reveals a novel Ser-Ser-Lys catalytic triad in a new serine hydrolase fold that is prevalent in nature, EMBO J, 21 (2002) 2509–2516.PubMedGoogle Scholar
  127. Siemens, J., Zhou, S., Piskorowski, R., Nikai, T., Lumpkin, E. A., Basbaum, A. I., King, D. and Julius, D., Spider toxins activate the capsaicin receptor to produce inflammatory pain, Nature, 444 (2006) 208–212.PubMedGoogle Scholar
  128. Simon, G. M. and Cravatt, B. F., Endocannabinoid biosynthesis proceeding through glycerophospho-N-acyl ethanolamine and a role for alpha/beta-hydrolase 4 in this pathway, J Biol Chem, 281 (2006) 26465–26472.PubMedGoogle Scholar
  129. Sipe, J. C., Chiang, K., Gerber, A. L., Beutler, E. and Cravatt, B. F., A missense mutation in human fatty acid amide hydrolase associated with problem drug use, Proc Natl Acad Sci U S A, 99 (2002) 8394–8399.PubMedGoogle Scholar
  130. Sipe, J. C., Waalen, J., Gerber, A. and Beutler, E., Overweight and obesity associated with a missense polymorphism in fatty acid amide hydrolase (FAAH), Int J Obesity, 29 (2005) 755–799.Google Scholar
  131. Starowicz, K., Nigam, S. and Di Marzo, V., Biochemistry and pharmacology of endovanilloids, Pharmacol Ther, 114 (2007) 13–33.PubMedGoogle Scholar
  132. Stella, N., Schweitzer, P. and Piomelli, D., A second endogenous cannabinoid that modulates long-term potentiation, Nature, 388 (1997) 773–778.PubMedGoogle Scholar
  133. Sugiura, T. and Waku, K., 2-Arachidonoylglycerol and the cannabinoid receptors, Chem Phys Lipids, 108 (2000b) 89–106.Google Scholar
  134. Sugiura, T., Kondo, S., Sukagawa, A., Nakane, S., Shinoda, A., Itoh, K., Yamashita, A. and Waku, K., Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain, Biochem Biophys Res Commun, 215 (1995) 89–95.PubMedGoogle Scholar
  135. Sugiura, T., Kondo, S., Kishimoto, S., Miyashita, T., Natane, S., Kodaka, T., Suhara, Y.,Takayama, H. and Waku, K., Evidence that 2-arachidonoylglycerol but not N-palmitoylethanolamine or anandamide is the physiological ligand for the cannabinoid CB2 receptor. Comparison of the agonistic activities of various cannabinoid receptor ligands in HL-60 cells, J Biol Chem, 275 (2000a) 605–612.Google Scholar
  136. Sugiura, T., Kobayashi, Y., Oka, S. and Waku, K., Biosynthesis and degradation of anandamide and 2-arachidonoylglycerol and their possible physiological significance, Prostaglandins Leukot Essent Fatty Acids, 66 (2002) 173–192.PubMedGoogle Scholar
  137. Sun, Y. X., Tsuboi, K., Okamoto, Y., Tonai, T., Murakami, M., Kudo, I. and Ueda, N., Biosynthesis of anandamide and N-palmitoylethanolamine by sequential actions of phospholipase A2 and lysophospholipase D, Biochem J, 380 (2004) 749–756.PubMedGoogle Scholar
  138. Tarzia, G., Duranti, A., Gatti, G., Piersanti, G., Tontini, A., Rivara, S., Lodola, A., Plazzi, P. V., Mor, M., Kathuria, S. and Piomelli, D., Synthesis and structure-activity relationships of FAAH inhibitors: cyclohexylcarbamic acid biphenyl esters with chemical modulation at the proximal phenyl ring, Chem Med Chem, 1 (2006) 130–139.PubMedGoogle Scholar
  139. Tsuboi, K., Sun, Y. X., Okamoto, Y., Araki, N., Tonai, T. and Ueda, N., Molecular characterization of N-acylethanolamine-hydrolyzing acid amidase, a novel member of the choloylglycine hydrolase family with structural and functional similarity to acid ceramidase, J Biol Chem, 280 (2005) 11082–11092.PubMedGoogle Scholar
  140. Ueda, N., Kurahashi, Y., Yamamoto, S. and Tokunaga, T., Partial purification and characterization of the porcine brain enzymehydrolyzing and synthesizing anandamide, J Biol Chem, 270 (1995) 23823–23827.PubMedGoogle Scholar
  141. van der Stelt, M. and Di Marzo, V., Endovanilloids. Putative endogenous ligands of transient receptor potential vanilloid 1 channels, Eur J Biochem, 271 (2004) 1827–1834.Google Scholar
  142. van der Stelt, M., van Kuik, J. A., Bari, M., van Zadelhoff, G., Leeflang, B. R., Veldink, G. A., Finazzi-Agrò, A., Vliegenthart, J. F. and Maccarrone, M., Oxygenated metabolites of anandamide and 2-arachidonoyl-glycerol: conformational analysis and interaction with cannabinoid receptors, membrane transporter and fatty acid amide hydrolase, J Med Chem, 45 (2002) 3709–3720.PubMedGoogle Scholar
  143. Van Sickle, M. D., Duncan, M., Kingsley, P. J., Mouihate, A., Urbani, P., Mackie, K., Stella, N., Makriyannis, A., Piomelli, D., Davison, J. S., Marnett, L. J., Di Marzo, V., Pittman, Q. J., Patel, K. D. and Sharkey, K. A., Identification and functional characterization of brainstem cannabinoid CB2 receptors, Science, 310 (2005) 329–332.PubMedGoogle Scholar
  144. Vandevoorde, S., Saha, B., Mahadevan, A., Razdan, R. K., Pertwee, R. G., Martin, B. R. and Fowler, C. J., Influence of the degree of unsaturation of the acyl side chain upon the interaction of analogues of 1-arachidonoylglycerol with monoacylglycerol lipase and fatty acid amide hydrolase, Biochem Biophys Res Commun, 337 (2005) 104–109.PubMedGoogle Scholar
  145. Waleh, N. S., Cravatt, B. F., Apte-Deshpande, A., Terao, A. and Kilduff, T. S., Transcriptional regulation of the mouse fatty acid amide hydrolase gene, Gene, 291 (2002) 203–210.PubMedGoogle Scholar
  146. Wan, M., Cravatt, B. F., Ring, H. Z., Zhang, X. and Francke, U., Conserved chromosomal location and genomic structure of human and mouse fatty-acid amide hydrolase genes and evaluation of clasper as a candidate neurological mutation, Genomics, 54 (1998) 408–414.PubMedGoogle Scholar
  147. Wang, H., Xie, H., Guo, Y., Zhang, H., Takahashi, T., Kingsley, P. J., Marnett, L. J., Das, S. K., Cravatt, B. F. and Dey, S. K., Fatty acid amide hydrolase deficiency limits early pregnancy events, J Clin Invest, 116 (2006) 2122–2131.PubMedGoogle Scholar
  148. Wei, B. Q., Mikkelsen, T. S., McKinney, M. K., Lander, E. S. and Cravatt, B. F., A second fatty acid amide hydrolase with variable distribution among placental mammals, J Biol Chem, 281 (2006) 36569–36578.PubMedGoogle Scholar
  149. Wendt, K. U., Poralla, K. and Schulz, G.E., Structure and function of a squalene cyclase, Science, 277 (1997) 1811–1815.PubMedGoogle Scholar
  150. Yang, H. Y., Karoum, F., Felder, C., Badger, H., Wang, T. C. and Markey, S. P., GC/MS analysis of anandamide and quantification of N-arachidonoylphosphatidylethanolamides in various brain regions, spinal cord, testis, and spleen of the rat, J Neurochem, 72 (1999) 1959–1968.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Filomena Fezza
  • Chiara De Simone
  • Daniele Amadio
  • Mauro Maccarrone
    • 1
    • 2
  1. 1.Department of Experimental Medicine & Biochemical SciencesUniversity of Rome“Tor Vergata”, RomeItalItaly
  2. 2.European Center for Brain Research (CERC)/IRCCS S. Lucia FoundationItal

Personalised recommendations