New Light on Aerobic Anoxygenic Phototrophs

Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 28)

Summary

Discovered 30 years ago, aerobic anoxygenic phototrophs (AAP) represent an entirely new bacterial functional group that was surprisingly found to constitute nearly 10% of microbial cells in the world’s biggest surface ecosystem, the ocean. These intriguing and colorful descendents of anaerobic anoxygenic phototrophs possess a fully functional photosynthetic apparatus that is paradoxically operative only under oxic conditions. An obviously ancient group, the AAP display numerous extensive evolutionary modifications to their photosynthetic machinery from that of their ancestors, such as different suites of light-harvesting 2 complexes and, in some species, the only zinc-based chlorophyll pigments found anywhere in nature. Whereas AAP are incapable of photoautotrophy and rely on heterotrophy for 80% or more of their cellular energetics, sunlight can double organic carbon assimilatory efficiency over that of strict heterotrophs, making AAP key players in the marine carbon cycle. The AAP inhabit not just soil, rivers and oceans, but also hypersaline waters, thermal springs and even the dark realm of deep ocean hydrothermal vents. Ubiquity and atypical photosynthetic nature has inspired an ever-increasing scientific interest in the AAP, for which there are more exceptions than rules.

Abbreviations

AAP

aerobic anoxygenic phototrophs

BChl

bacteriochlorophyll

Cmi.

Citromicrobium

Cyt

cytochrome

D

Dinoroseobacter

DMSP

dimethylsulfoniopropionate

E.

Erythromicrobium

Erb.

Erythrobacter

GYa

109 years ago

H.

Hoeflea

IREM

infrared epifluorescence microscopy

IRFRR

infrared fast repetition rate fluorometry

LH

lightharvesting

PEP

phosphoenol pyruvate

PSU

photosynthetic unit

QPCR

quantitative polymerase chain reaction

Qy

electronic transition of BChl a from ground state to lowest excited singlet state

R.

Roseicyclus

Rba.

Rhodobacter

RC

reaction center

Rps.

Rhodopseudomonas

Rsc.

Roseococcus

Rst.

Roseateles

Rubisco

ribulose-1,5-bisphosphate carboxylase/oxygenase

Rva

Roseovarius

S.

Stappia

Srb.

Sandaracinobacter

Stl.

Staleya

TMAO

trimethylamine N-oxide

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alarico S, Rainey FA, Empadinhas N, Schumann P, Nobre MF and Da Costa MS (2002) Rubritepida flocculans gen. nov., sp. nov., a new slightly thermophilic member of the α-1 subclass of the Proteobacteria. Syst Appl Microbiol 25: 198–206PubMedGoogle Scholar
  2. Allgaier M, Uphoff H, Felske A and Wagner-Döbler I (2003) Aerobic anoxygenic photosynthesis in Roseobacter clade bacteria from diverse marine habitats. Appl Environ Microbiol 69: 5051–5059PubMedGoogle Scholar
  3. Beatty JT (2002) On the natural selection and evolution of the aerobic phototrophic bacteria. Photosynth Res 73: 109–114PubMedGoogle Scholar
  4. Beatty JT, Overmann J, Lince MT, Manske AK, Lang AS, Blankenship RE, van Dover CL, Martinson TA and Plumley FG (2005) An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proc Natl Acad Sci 102: 9306–9310PubMedGoogle Scholar
  5. Béjà O, Suzuki MT, Heidelberg JF, Nelson WC, Preston CM, Hamada T, Elsen JA, Fraser CM and DeLong EF (2002) Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature 415: 630–633PubMedGoogle Scholar
  6. Biebl H and Wagner-Döbler I (2006) Growth and bacteriochlorophyll a formation in taxonomically diverse aerobic anoxygenic phototrophic bacteria in chemostat culture: Influence of light regimen and starvation. Proc Biochem 41: 2153–2159Google Scholar
  7. Biebl H, Allgaier M, Lünsdorf H, Pukall R, Tindall BJ and Wagner-Döbler I (2005a) Roseovarius mucosus sp. nov., amember of the Roseobacter clade with trace amounts of bacteriochlorophyll a. Int J Syst Evol Microbiol 55: 2377–2383PubMedGoogle Scholar
  8. Biebl H, Allgaier M, Tindall, BJ Koblížek M, Lünsdorf H, Pukall R and Wagner-Döbler I (2005b) Dinoroseobacter shibae gen nov., sp. nov., a new aerobic phototrophic bacterium isolated from dinoflagellates. Int J Syst Evol Microbiol 55: 1089–1096PubMedGoogle Scholar
  9. Biebl H, Tindall BJ, Pukall R, Lünsdorf H, Allgaier M and Wagner-Döbler I (2006) Hoeflea phototrophica sp. nov., a novel marine aerobic alphaproteobacterium that forms bacteriochlorophyll a. Int J Syst Evol Microbiol 56: 821–826PubMedGoogle Scholar
  10. Biebl H, Pukall R, Lünsdorf H, Schulz S, Allgaier M, Tindall BJ and Wagner-Döbler I (2007) Description of Labrenzia alexandrii gen. nov., sp. nov., a novel alphaproteobacterium containing bacteriochlorophyll a, and a proposal for reclassification of Stappia aggregata as Labrenzia aggregata comb. nov., of Stappia marina as Labrenzia marina comb. nov. and of Stappia alba as Labrenzia alba comb. nov., and emended descriptions of the genera Pannonibacter, Stappia and Roseibium, and of the species Roseibium denhamense and Roseibium hamelinense. Int J Syst Evol Microbiol 57: 1095–1107PubMedGoogle Scholar
  11. Boettcher KJ, Geaghan KK, Maloy AP and Barber BJ (2005) Roseovarius crassostreae sp. nov., a member of the Roseobacter clade and the apparent cause of juvenile oyster disease (JOD) in cultured Eastern oysters. Int J Syst Evol Microbiol 55: 1531–1537PubMedGoogle Scholar
  12. Boldareva EN, Bryantseva IA, Tsapin A, Nelson K, Sorokin DY, Tourova TP, Boichenko VA, Stadnichuk IN and Gorlenko VM (2007) The new alkaliphilic bacteriochlorophyll a-containing bacterium Roseinatronobacter monicus sp. nov. from the hypersaline soda Mono Lake (California, United States). Microbiology 76: 82–92Google Scholar
  13. Brown MV and Fuhrman JA (2005) Marine bacterial microdiversity as revealed by internal transcribed spacer analysis. Aquat Microbial Ecol 41: 15–23Google Scholar
  14. Cho JC, Stapels MD, Morris RM, Vergin MS, Schwalbach MS, Givan SA, Barofsky DF and Giovannoni SJ (2007) Polyphyletic photosynthetic reaction centre genes in oligotrophic marine Gammaproteobacteria. Environ Microbiol 9: 1456–1463PubMedGoogle Scholar
  15. Cogdell RJ, Howard TD, Isaacs NW, McLuskey K and Gardiner AT (2002) Structural factors which control the position of the Qy absorption band of bacteriochlorophyll a in purple bacterial antenna complexes. Photosynth Res 74: 135–141PubMedGoogle Scholar
  16. Cottrell MT, Mannino A and Kirchman DL (2006) Aerobic anoxygenic phototrophic bacteria in the Mid-Atlantic Bight and the North Pacific Gyre. Appl Environ Microbiol 72: 557–564PubMedGoogle Scholar
  17. Denner, EBM, Vybiral D, Koblížek M, Kämpfer P, Busse H and Velimirov B (2002) Erythrobacter citreus sp. nov., a yellow-pigmented bacterium that lacks bacteriochlorophyll a, isolated from the western Mediterranean Sea. Int J Syst Evol Microbiol 62: 1655–1661Google Scholar
  18. Du H, Jiao N, Hu Y and Zeng Y (2006) Real-time PCR for quantification of aerobic anoxygenic phototrophic bacteria based on pufM gene in marine environment. J Exp Mar Biol Ecol 329: 113–121Google Scholar
  19. Evans K, Fordham-Skelton AP, Mistry H, Reynolds CD, Lawless AM and Papiz MZ (2005) A bacteriophytochrome regulates the synthesis of LH4 complexes in Rhodopseudomonas palustris. Photosynth Res 85: 169–180PubMedGoogle Scholar
  20. Fenchel T (2001) Marine bugs and carbon flow. Science 292: 2444–2445PubMedGoogle Scholar
  21. Fleischman D and Kramer D (1998) Photosynthetic rhizobia. Biochim Biophys Acta 1364: 17–36PubMedGoogle Scholar
  22. Foesel BU, Gößner AS, Drake HL and Schramm A (2007) Geminicoccus roseus gen. nov., sp. nov., an aerobic phototrophic Alphaproteobacterium isolated from a marine aquaculture biofilter. Syst Appl Microbiol 30: 581–586PubMedGoogle Scholar
  23. Fowler GJS, Visschers RW, Grief GG, van Grondelle R and Hunter CN (1992) Genetically modified photosynthetic antenna complexes with blueshifted absorbance bands. Nature 355: 848–850PubMedGoogle Scholar
  24. Fowler GJS, Sockalingum GD, Robert B and Hunter CN (1994) Blue shifts in bacteriochlorophyll absorbance correlate with changed hydrogen bonding patterns in light harvesting LH2 mutants of Rhodobacter sphaeroides with alterations at Tyr44 and Tyr45. Biochem. J. 299: 695–700PubMedGoogle Scholar
  25. Francia F, Wang J, Venturoli G, Melandri BA, Barz WP and Oesterhelt D (1999) The reaction center-LH1 antenna complex of Rhodobacter sphaeroides contains one PufX molecule which is involved in dimerization of this complex. Biochemistry 38: 6834–6845PubMedGoogle Scholar
  26. Fraser NJ, Hashimoto H and Cogdell RJ (2001) Carotenoids and bacterial photosynthesis: The story so far…. Photosynth Res 70: 249–256PubMedGoogle Scholar
  27. Fuchs BM, Spring S, Teeling H, Quast C, Wulf J, Schattenhofer M, Yan S, Ferriera S, Johnson J, Glöckner FO and Amann R (2007) Characterization of a marine gammaproteobacterium capable of aerobic anoxygenic photosynthesis. Proc Natl Acad Sci 104: 2891–2896PubMedGoogle Scholar
  28. Gich F and Overmann J (2006) Sandarakinorhabdus limnophila gen. nov., sp. nov., a novel bacteriochlorophyll a-containing, obligately aerobic bacterium isolated from freshwater lakes. Int J Syst Evol Microbiol 56: 847–854PubMedGoogle Scholar
  29. Gich F, Schubert K, Bruns A, Hoffelner H and Overmann J (2005) Specific detection, isolation, and characterization of selected, previously unculturedmembers of the freshwater bacterioplankton community. Appl Environ Microbiol 71: 5908–5919PubMedGoogle Scholar
  30. Giraud E and Fleischman D (2004) Nitrogen-fixing symbiosis between photosynthetic bacteria and legumes. Photosynth Res 82: 115–130PubMedGoogle Scholar
  31. González JM, Covert JS, Whitman WB, Henriksen JR, Mayer F, Scharf B, Schmitt R, Buchan A, Fuhrman JA, Kiene RP and Moran MA (2003) Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp.nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. Int J Syst Evol Microbiol 53: 1261–1269PubMedGoogle Scholar
  32. Hartigan N, Tharia HA, Sweeney F, Lawless AM and Papiz MZ (2002) The 7.5-Å electron density and spectroscopic properties of a novel low-light B800 LH2 from Rhodopseudomonas palustris. Biophys J 82: 963–977PubMedCrossRefGoogle Scholar
  33. Hiraishi A and Shimada K (2001) Aerobic anoxygenic photosynthetic bacteria with zinc-bacteriochlorophyll. J Gen Appl Microbiol 47: 161–180PubMedGoogle Scholar
  34. Hucke O, Schiltz E, Drews G and Labahn A (2003) Sequence analysis reveals new membrane anchor of reaction centre-bound cytochromes possibly related to PufX. FEBS Lett 535: 166–170PubMedGoogle Scholar
  35. Igarashi N, Harada J, Nagashima S, Matsuura K, Shimada K and Nagashima KVP (2001) Horizontal transfer of the photosynthesis gene cluster and operon rearrangement in purple bacteria. J Mol Evol 52: 333–341PubMedGoogle Scholar
  36. Ivanova EP, Pham DK, Wright JP and Nicolau DV (2002) Detection of coccoid forms of Sulfitobacter mediterraneus using atomic force microscopy. FEMS Microbiol Lett 214: 177–181PubMedGoogle Scholar
  37. Ivanova EP, Bowman JP, Lysenko AM, Zhukova NV, Gorshkova NM, Kuznetsova TA, Kalinovskaya NI, Shevchenko LS and MikhailovVV (2005) Erythrobacter vulgaris sp. nov., anovel organism isolated from the marine invertebrates. Syst Appl Microbiol 28: 123–130PubMedGoogle Scholar
  38. Jiao N, Zhang Y and Chen Y (2006) Time series observation based InfraRed Epifluorescence Microscopic (TIREM) approach for accurate enumeration of bacteriochlorophyll-containing microbes in marine environments. J Microbiol Meth 65: 442–452Google Scholar
  39. Karr EA, Sattley WM, Jung DO, Madigan MT and Achenbach LA (2003) Remarkable diversity of phototrophic purple bacteria in a permanently frozen Antarctic lake. Appl Environ Microbiol 69: 4910–4914PubMedGoogle Scholar
  40. Kim B-C, Park JR, Bae J-W, Rhee S-K, Kim K-H, Oh J-W and Park Y-H (2006) Stappia marina sp. nov., a marine bacterium isolated from the Yellow Sea. Int J Syst Evol Microbiol 56: 75–79PubMedGoogle Scholar
  41. Kim MK, Schubert K, Im W-T, Kim K-H, Lee S-T and Overmann J (2007) Sphingomonas kaistensis sp. nov., a novel alphaproteobacterium containing pufLM genes. Int J Syst Microbiol Ecol 57: 1527–1534Google Scholar
  42. Klug G (1993) Regulation of expression of photosynthesis genes in anoxygenic photosynthetic bacteria. Arch Microbiol 159: 397–404PubMedGoogle Scholar
  43. Koblizek M, Béjà O, Bidigare RR, Christensen S, Benetiz-Nelson B, Vetriani C, Kolber MK, Falkowski PG and Kolber ZS (2003) Isolation and characterization of Erythrobacter sp. strains from the upper ocean. Arch Microbiol 180: 327–338PubMedGoogle Scholar
  44. Koblížek M, Stoń-Egiert J, Sagan S and Kolber ZS (2005) Diel changes in bacteriochlorophyll a concentration suggest rapid bacterioplankton cycling in the Baltic Sea. FEMS Microbiol Ecol 51: 353–361PubMedGoogle Scholar
  45. Koblížek M, Falkowski PG and Kolber ZS (2006) Diversity and distribution of photosynthetic bacteria in the Black Sea. Deep-Sea Res II 53: 1934–1944Google Scholar
  46. Koblížek M, Mašín M, Ras J, Poulton AJ and Prášil O (2007) Rapid growth rates of aerobic anoxygenic phototrophs in the ocean. Environ Microbiol 9: 2401–2406PubMedGoogle Scholar
  47. Kohler S, Schwarze C, Herter S, Gad’on N, Drews G and Labahn A (2005) Exploring the structure of the reaction center from the aerobic photosynthetic bacterium Roseobacter denitrificans with fourier transform infrared spectroscopy. In: van der Est A and Bruce D (eds) Photosynthesis: Fundamental Aspects to Global Perspectives, pp 202–204. Alliance Communications Group, LawrenceGoogle Scholar
  48. Kolber ZS, Van Dover CL, Niederman RA and Falkowski PG (2000) Bacterial photosynthesis in surface waters of the open ocean. Nature 407: 177–179PubMedGoogle Scholar
  49. Kolber ZS, Plumley G, Lang AS, Beatty JT, Blankenship RE, Van Dover CL, Vetriani C, Koblížek M, Rathgeber C and Falkowski PG (2001) Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292: 2492–2495PubMedGoogle Scholar
  50. Komagata K (1989) Taxonomy of facultative methylotrophs. In: Harashima K, Shiba T and Murata N (eds) Aerobic Photosynthetic Bacteria, pp 25–38. Japan Scientific Societies Press, Tokyo and Springer-Verlag, BerlinGoogle Scholar
  51. Krinsky (1971) IX. Function. In: Isler O (ed) Carotenoids, pp 670–716. Birkhäuser Verlag, BaselGoogle Scholar
  52. Labrenz M, Lawson PA, Tindall BJ, Collins MD and Hirsch P (2005) Roseisalinus antarcticus gen. nov., sp. nov., a novel aerobic bacteriochlorophyll a-producing α-proteobacterium isolated from hypersaline Ekho Lake, Antarctica. Int J Syst Evol Microbiol 55: 41–47PubMedGoogle Scholar
  53. Lami R, Cottrell MT, Ras J, Ulloa O, Obernosterer I, Claustre H, Kirchman DL and Lebaron P (2007) High abundances of aerobic anoxygenic phototrophic bacteria in the South Pacific Ocean. Appl Environ Microbiol 73: 4198–4205PubMedGoogle Scholar
  54. Larimer FW, Chain P, Hauser L, Lamerdin J, Malfatti S, Do L, Land, ML, Pelletier DA, Beatty JT, Lang AS, Tabita FR, Gibson JL, Hanson TE, Bobst C, Torres JLTy, Peres C, Harrison FH, Gibson J and Harwood CS (2004) Complete genome sequence of the metabolically versatile photo synthetic bacterium Rhodopseudomonas palustris. Nature Biotech 22: 55–61Google Scholar
  55. Liebetanz R, Hornberger U and Drews G (1991) Organization of the genes coding for the reaction center L and M subunits and B870 antenna polypeptides alpha and beta from the aerobic photo synthetic bacterium Erythrobacter sp. OCh1 14. Mol Microbiol 5: 1459–1468PubMedGoogle Scholar
  56. Macián MC, Arahal DR, Garay E, Ludwig W, Schleifer KH and Pujalte MJ (2005) Thalassobacter stenotrophicus gen. nov., sp. nov., a novel marine α-proteobacterium isolated from Mediterranean sea water. Int J Syst Evol Microbiol 55: 105–110PubMedGoogle Scholar
  57. Marchand EA and Silverstein J (2003) The role of enhanced heterotrophic bacterial growth on iron oxidation by Acidithiobacillus ferrooxidans. Geomicrobiol J 20: 231–244Google Scholar
  58. Marrs B (1981) Mobilization of the genes for photosynthesis from Rhodopseudomonas capsulata by a promiscuous plasmid. J Bacteriol 146: 1003–1012PubMedGoogle Scholar
  59. Masuda S, Matsumoto Y, Nagashima KVP, Shimada K, Inoue K, Bauer CE and Matsuura K (1999) Structural and functional analyses of photo synthetic regulatory genes regA and regB from Rhodovulum sulfidophilum, Roseobacter denitrificans and Rhodobacter capsulatus. J Bacteriol 181: 4205–4215PubMedGoogle Scholar
  60. Murray RGE, Brenner DJ, Colwell RR, De Vos P, Goodfellow M, Grimont PAD, Pfennig N, Stackebrandt E and Zivarzin GA (1990) Report of the ad hoc committee on approaches to taxonomy within Proteobacteria. Int J Syst Bacteriol 40: 213–215Google Scholar
  61. Nagashima KVP, Matsuura K, Wakao N, Hiraishi A and Shimada K (1997) Nucelotide sequences of genes coding for photo synthetic reaction centers and light-harvesting proteins of Acidiphilium rubrum and related aerobic acidophilic bacteria. Plant Cell Physiol 38: 1249–1258PubMedGoogle Scholar
  62. Ouchane S, Steunou A, Picaud M and Astier C (2004) Aerobic and anaerobic Mg-protoporphyrin monomethyl ester cyclases in purple bacteria. J Biol Chem 279: 6385–6394PubMedGoogle Scholar
  63. Oz A, Sabehi G, Koblížek M, Massana R and Béjà O (2005) Roseobacter-like bacteria in Red and Mediterranean Sea aerobic anoxygenic photosynthetic populations. Appl Environ Microbiol 71: 344–353PubMedGoogle Scholar
  64. Peplies J, Glöckner FO, Amann R and Ludwig W (2004) Comparative sequence analysis and oligonucleotide probe design based on 23S rRNA genes of Alphaproteobacteria from North Sea bacterioplankton. Syst Appl Microbiol 27: 573–580PubMedGoogle Scholar
  65. Pfennig N (1967) Photo synthetic bacteria. Ann Rev Microbiol 21: 285–384Google Scholar
  66. Pfennig N (1978) Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped vitamin B12-requiring member of the family Rhodospirillaceae. Int J Syst Bacteriol 28: 283–288Google Scholar
  67. Pradella S, Allgaier M, Hoch C, Päuker O, Stackebrandt E and Wagner-Döbler I (2004) Genome organization and localization of the pufLM genes of the photosynthesis reaction center in phylogenetically diverse marine Alphaproteobacteria. Appl Environ Microbiol 70: 3360–3369PubMedGoogle Scholar
  68. Rainey FA, Silva J, Bobre MF, Silva MT and da Costa MS (2003) Porphyrobacter cryptus sp. nov., a novel slightly thermophilic, aerobic, bacteriochlorophyll a-containing species. Int J Syst Evol Microbiol 53: 35–41PubMedGoogle Scholar
  69. Rappé MS, Connon SA, Vergin KL and Giovannoni SJ (2002) Cultivation of the ubiquitous SAR1 1 marine bacterioplankton clade. Nature 418: 630–633PubMedGoogle Scholar
  70. Rathgeber C, Beatty JT and Yurkov V (2004) Aerobic phototrophic bacteria: new evidence for the diversity, ecological importance and applied potential of this previously overlooked group. Photosynth Res 81: 113–128Google Scholar
  71. Rathgeber C, Yurkova N, Stackebrandt E, Schumann P, Beatty JT and Yurkov V (2005) Roseicyclus mahoneyensis gen nov., sp. nov., an aerobic phototrophic bacterium isolated from a meromictic lake. Int J Syst Evol Microbiol 55: 1597–1603PubMedGoogle Scholar
  72. Rathgeber C, Yurkova N, Stackebrandt E, Schumann P, Humphrey E, Beatty JT and Yurkov V (2007) Porphyrobacter meromictius sp. nov., an appendaged bacterium, that produces bacteriochlorophyll a. Curr Microbiol 55: 356–361PubMedGoogle Scholar
  73. Rickard AH, Leach SA, Hall LS, Buswell CM, High NJ and Handley PS (2002) Phylogenetic relationships and coaggregation ability of freshwater biofilm bacteria. Appl Environ Microbiol 68: 3644–3650PubMedGoogle Scholar
  74. Rohwerder T and Sand W (2003) The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp. Microbiology 149: 1699–1709PubMedGoogle Scholar
  75. Rye R and Holland HD (1998) Paleosols and the evolution of atmospheric oxygen: A critical review. Am J Sci 298: 621–672PubMedGoogle Scholar
  76. Salka I, Jost G, Jürgens K and Labrenz M (2006) Diversity and distribution of aerobic BChl a-producing bacteria in a depth profile of the central Baltic Sea. In: BIOspectrum Abstracts, VAAM Tagung Jena (PE42), p 142. Spektrum Akademischer Verlag GmBH, HeidelbergGoogle Scholar
  77. Schwalbach MS and Fuhrman JA (2005) Wide-ranging abundances of aerobic anoxygenic phototrophic bacteria in the world ocean revealed by epifluorescence microscopy and quantitative PCR. Limnol Oceanogr 50: 620–628Google Scholar
  78. Schwarze C, Carluccio AV, Venturoli G and Labahn A (2000) Photo-induced cyclic electron transfer involving cytochrome bc 1 complex and reaction center in the obligate aerobic phototroph Roseobacter denitrificans. Eur J Biochem 267: 422–433PubMedGoogle Scholar
  79. Shiba T, Simidu U and Taga N (1979) Distribution of aerobic bacteria which contain bacteriochlorophyll a. Appl Environ Microbiol 38: 43–45PubMedGoogle Scholar
  80. Siebert CA, Qian P, Fotiadis D, Engel A, Hunter CN and Bullough PA (2004) Molecular architecture of photosynthetic membranes in Rhodobacter sphaeroides: the role of PufX. EMBO J 23: 690–700PubMedGoogle Scholar
  81. Sieracki ME, Gilg IC, Their EC, Poulton NJ and Goericke R (2006) Distribution of planktonic aerobic photoheterotrophic bacteria in the northwest Atlantic. Limnol Oceanogr 51: 38–46Google Scholar
  82. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PAD, Kämpfer P, Maiden MCJ, Nesme X, Roselló-Mora R, Swings J, Trüper HG, Vauterin L, Ward AC and Whitman WB (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52: 1043–1047PubMedGoogle Scholar
  83. Steiner R and Scheer H (1985) Characterization of a B800/1020 antenna from the photo synthetic bacteria Ectothiorhodospia halochloris and Ectothiorhodospia abdelmalekii. Biochim BiophysActa 3: 278–284Google Scholar
  84. Suyama T, Shigematsu T, Suzuki T, Tokiwa Y, Kanagawa T, Nagashima KVP and Hanada S (2002) Photosynthetic apparatus in Roseateles depolymerans 61A is transcriptionally inducedby carbon limitation. Appl Environ Microbiol 68: 1665–1673PubMedGoogle Scholar
  85. Suzuki T, Mori Y and Nishimura Y (2006) Roseibacterium elongatum gen. nov., sp. nov., an aerobic, bacteriochlorophyll-containing bacterium isolated from the west coast of Australia. Int J Syst Evol Microbiol 56: 417–421PubMedGoogle Scholar
  86. Swingley WD, Gholba S, Mastrian SD, Matthies HJ, Hao J, Ramos H, Acharya CR, Conrad AL, Taylor HL, Dejesa LC, Shah MK, O’Huallachain ME, Lince MT, Blankenship RE, Beatty JT and Touchman JW (2007) The complete genome sequence of Roseobacter denitrificans reveals a mixotrophic as opposed to photosynthetic metabolism. J Bacteriol 189: 683–690PubMedGoogle Scholar
  87. Uchino Y, Hirata A, Yokota A and Sugiyama J (1998) Reclassification of marine Agrobacterium species: Proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregata, sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov., Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev. J Gen Appl Microbiol 44: 201–210PubMedGoogle Scholar
  88. van Berkum P, Leibold JM and Eardly BD (2006) Proposal for combining Bradyrhizobium spp. (Aeschynomene indica) with Blastobacter denitrificans and to transfer Blastobacter denitrificans (Hirsch and Muller, 1985) to the genus Bradyrhizobium as Bradyrhizobium denitrificans (comb. nov). Syst Appl Microbiol 29: 207–215PubMedGoogle Scholar
  89. Wagner-Döbler I and Biebl H (2006) Environmental biology of the marine Roseobacter lineage. Ann Rev Microbiol 60: 255–280Google Scholar
  90. Waidner LA and Kirchman DL (2005) Aerobic anoxygenic photosynthesis genes and operons in uncultured bacteria in the Delaware River. Environ Microbiol 7: 1896–1908PubMedGoogle Scholar
  91. Waidner LA and Kirchman DL (2007) Aerobic anoxygenic phototrophic bacteria attached to particles in turbid waters of the Delaware and Chesapeake Estuaries. Appl Environ Microbiol 73: 3936–3944PubMedGoogle Scholar
  92. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandier O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP and Trüper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464CrossRefGoogle Scholar
  93. Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271PubMedGoogle Scholar
  94. Yoon J-H, Kim H, Kim I-G, Kang KH and Park Y-H (2003) Erythrobacter flavus sp. nov., a slight halophile from the East Sea in Korea. Int J Syst Evol Microbiol 53: 1169–1174PubMedGoogle Scholar
  95. Yoon J-H, Kang KH, Oh T-K and Park Y-H (2004a) Erythrobacter aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 54: 1981–1985PubMedGoogle Scholar
  96. Yoon J-H, Lee M-H and Oh T-K (2004b) Porphyrobacter donghaensis sp. nov., isolated from sea water of the East Sea in Korea. Int J Syst Evol Microbiol 54: 2231–2235PubMedGoogle Scholar
  97. Yoon J-H, Kang KH, Yeo S-H and Oh T-K (2005a) Erythrobacter luteolus sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 55: 1167–1170PubMedGoogle Scholar
  98. Yoon J-H, Oh T-K and Park Y-H (2005b) Erythrobacter seohaensis sp. nov. and Erythrobacter gaetbuli sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 55: 71–75PubMedGoogle Scholar
  99. Yoon J-H, Kang S-J, Lee M-H, Oh HW and Oh T-K (2006) Porphyrobacter dokdonensis sp. nov., isolated from sea water. Int J Syst Evol Microbiol 56: 1079–1083PubMedGoogle Scholar
  100. Yurkov VV (2006) Aerobic phototrophic proteobacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H and Stackebrandt E (eds) Prokaryotes (3rd Edition), Vol 5, pp 562–584. Springer-Verlag, New YorkGoogle Scholar
  101. Yurkov VV and Beatty JT (1998) Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62: 695–724PubMedGoogle Scholar
  102. Yurkov VV and Csotonyi JT (2003) Aerobic anoxygenic phototrophs and heavy metalloid reducers from extreme environments. In: Pandalai SG (ed) Recent Research Developments in Bacteriology, Vol 1, pp 247–300. Transworld Research Network, TrivandrumGoogle Scholar
  103. Yurkov V and van Gemerden H (1993) Impact of light/dark regimen on growth rate, biomass formation and bacteriochlorophyll synthesis in Erythromicrobium hydrolyticum. Arch Microbiol 159: 84–89Google Scholar
  104. Yurkov VV, Krieger S, Stackebrandt E and Beatty JT (1999) Citromicrobium bathyomarinum, a novel aerobic bacterium isolated from deep-sea hydrothermal vent plume waters that contains photosynthetic pigment-protein complexes. J Bacteriol 181: 4517–4525PubMedGoogle Scholar
  105. Yurkova N, Rathgeber C, Swiderski J, Stackebrandt E, Beatty JT, Hall KJ and Yurkov V (2002) Diversity, distribution and physiology of the aerobic phototrophic bacteria in the mixolimnion of a meromictic lake. FEMS Microbiol Ecol 40: 191–204PubMedGoogle Scholar
  106. Yutin N and Béjà O (2005) Putative novel photosynthetic reaction centre organizations in marine aerobic anoxygenic photosynthetic bacteria: insights frommetagenomics and environmental genomics. Environ Microbiol 7: 2027–2033PubMedGoogle Scholar
  107. Yutin N, Suzuki MT and Béjà O (2005) Novel primers reveal wider diversity among marine aerobic anoxygenic phototrophs. Appl Environ Microbiol 71: 8958–8962PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  1. 1.Department of MicrobiologyUniversity of ManitobaWinnipegCanada

Personalised recommendations