Biogenesis of c-type Cytochromes and Cytochrome Complexes

  • Carsten Sanders
  • Serdar Turkarslan
  • Ozlem Onder
  • Elaine R. Frawley
  • Robert G. Kranz
  • Hans Georg Koch
  • Fevzi DaldalEmail author
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 28)


In most anoxygenic phototrophic bacteria, apocytochromes c are synthesized in the cytoplasm, translocated across the membrane and matured to holocytochromes c on the periplasmic side. The extracytoplasmic maturation process requires a complex biogenesis pathway (Ccm-system I) consisting of up to ten components to carry out specific steps. These include translocation and delivery of the heme, chaperoning and thio-oxidoreduction of the apocytochrome c as well as heme ligation steps. Because cytochromes are often part of multi-subunit protein complexes, matured holocytochromes may be assembled into active enzyme complexes. Examples include the ubihydroquinone:cytochrome c oxidoreductase (cytochrome bc 1 complex) or the aa 3- or cbb 3-type cytochrome c oxidases. Assemblies of these complexes are tightly coordinated and often require additional specific biogenesis components. In this chapter, we discuss the maturation process of c-type cytochromes and the assembly pathways of the aa 3- and cbb 3-type cytochrome c oxidases in anoxygenic phototrophic bacteria, with a specific focus on Rhodobacter species.


Rhodobacter Sphaeroides Rhodobacter Capsulatus Anoxygenic Phototrophic Bacterium Heme Cofactor Binuclear Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



aa3-type Cyt c oxidase


immature Cyt c without its heme cofactor attached




blue-native polyacrylamide gel electrophoresis


cbb3-type Cyt c oxidase


cytochrome c maturation system I


cytochrome maturation system II



holo- and apo-CcmE

CcmE with and without its heme cofactor, respectively


mature Cyt c with its heme cofactor attached


apoCyt c precursor with its signal sequence








Tetratricopeptide repeats


Tryptophan rich motif


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahuja U and Thony-Meyer L (2005) CcmD is involved in complex formation between CcmC and the heme chaperone CcmE during cytochrome c maturation. J Biol Chem 280: 236–243PubMedGoogle Scholar
  2. Allen JW, Tomlinson EJ, Hong L and Ferguson SJ (2002) The Escherichia coli cytochrome c maturation (Ccm) system does not detectably attach heme to single cysteine variants of an apocytochrome c. J Biol Chem 277: 33559–33563PubMedCrossRefGoogle Scholar
  3. Allen JW, Barker PD and Ferguson SJ (2003a) A cytochrome b 562 variant with a c-type cytochrome CXXCH heme-binding motif as a probe of the Escherichia coli cytochrome c maturation system. J Biol Chem 278: 52075–52083PubMedCrossRefGoogle Scholar
  4. Allen JW, Daltrop O, Stevens JM and Ferguson SJ (2003b) C-type cytochromes: Diverse structures and biogenesis systems pose evolutionary problems. Philos Trans R Soc Lond B Biol Sci 358: 255–266PubMedCrossRefGoogle Scholar
  5. Banci L, Bertini I, Ciofi-Baffoni S, Katsari E, Katsaros N, Kubicek K and Mangani S (2005) A copper(I) protein possibly involved in the assembly of CuA center of bacterial cytochrome c oxidase. Proc Natl Acad Sci USA 102: 3994–3999PubMedCrossRefGoogle Scholar
  6. Banci L, Bertini I, Cantini F, D’Amelio N and Gaggelli E (2006) Human SOD1 before harboring the catalytic metal: Solution structure of copper-depleted, disulfide-reduced form. J Biol Chem 281: 2333–2337PubMedCrossRefGoogle Scholar
  7. Barrientos A, Barros MH, Valnot I, Rotig A, Rustin P and Tzagoloff A (2002a) Cytochrome oxidase in health and disease. Gene 286: 53–63PubMedCrossRefGoogle Scholar
  8. Barrientos A, Korr D and Tzagoloff A (2002b) Shy lp is necessary for full expression of mitochondrial COX1 in the yeast model of Leigh’s syndrome. EMBO J 21: 43–52PubMedCrossRefGoogle Scholar
  9. Beckett CS, Loughman JA, Karberg KA, Donato GM, Goldman WE and Kranz RG (2000) Four genes are required for the system II cytochrome c biogenesis pathway in Bordetella pertussis, a unique bacterial model. Mol Microbiol 38: 465–481PubMedCrossRefGoogle Scholar
  10. Beckman DL and Kranz RG (1993) Cytochromes c biogenesis in aphotosynthetic bacterium requires a periplasmic thioredoxin-like protein. Proc Natl Acad Sci USA 90: 2179–2183PubMedCrossRefGoogle Scholar
  11. Beckman DL, Trawick DR and Kranz RG (1992) Bacterial cytochromes c biogenesis. Genes Dev 6: 268–283PubMedCrossRefGoogle Scholar
  12. Bernard DG, Quevillon-Cheruel S, Merchant S, Guiard B and Hamel PP (2005) Cyc2p, a membrane-bound flavoprotein involved in the maturation of mitochondrial c-type cytochromes. J Biol Chem 280: 39852–39859PubMedCrossRefGoogle Scholar
  13. Borsetti F, Tremaroli V, Michelacci F, Borghese R, Winterstein C, Daldal F and Zannoni D (2005) Tellurite effects on Rhodobacter capsulatus cell viability and Superoxide dismutase activity under oxidative stress conditions. Res Microbiol 156: 807–813PubMedCrossRefGoogle Scholar
  14. Bratton M, Mills D, Castleden CK, Hosier J and Meunier B (2003) Disease-related mutations in cytochrome c oxidase studied in yeast and bacterial models. Eur J Biochem 270: 1222–1230PubMedCrossRefGoogle Scholar
  15. Cao J, Hosier J, Shapleigh J, Revzin A and Ferguson-Miller S (1992) Cytochrome aa 3 of Rhodobacter sphaeroides as a model for mitochondrial cytochrome c oxidase. The coxII/coxIII operon codes for structural and assembly proteins homologous to those in yeast. J Biol Chem 267: 24273–24278PubMedGoogle Scholar
  16. Carr HS and Winge DR (2003) Assembly of cytochrome c oxidase within the mitochondrion. Acc Chem Res 36: 309–316PubMedCrossRefGoogle Scholar
  17. Chinenov YV (2000) Cytochrome c oxidase assembly factors with a thioredoxin fold are conserved among prokaryotes and eukaryotes. J Mol Med 78: 239–242PubMedCrossRefGoogle Scholar
  18. Colbert CL, Wu Q, Erbel PJ, Gardner KH and Deisenhofer J (2006) Mechanism of substrate specificity in Bacillus subtilis ResA, a thioredoxin-like protein involved in cytochrome c maturation. Proc Natl Acad Sci USA 103: 4410–4415PubMedCrossRefGoogle Scholar
  19. Collet JF and Bardwell JC (2002) Oxidative protein folding in bacteria. Mol Microbiol 44: 1–8PubMedCrossRefGoogle Scholar
  20. Crow A, Le Brun NE and Oubrie A (2005) The role of ResA in type II cytochrome c maturation. Biochem Soc Trans 33: 149–151PubMedCrossRefGoogle Scholar
  21. Davidson E and Daldal F (1987) Primary structure of the bc 1 complex of Rhodopseudomonas capsulata. Nucleotide sequence of the pet operon encoding the Rieske cytochrome b and cytochrome c 1 apoproteins. J Mol Biol 195: 13–24PubMedCrossRefGoogle Scholar
  22. de Gier JW, Schepper M, Reijnders WN, van Dyck SJ, Slotboom DJ, Warne A, Saraste M, Krab K, Finel M, Stouthamer AH, van Spanning RJ and van der Oost J (1996) Structural and functional analysis of aa 3-type and cbb 3-type cytochrome c oxidases of Paracoccus denitrificans reveals significant differences in proton-pump design. Mol Microbiol 20: 1247–1260PubMedCrossRefGoogle Scholar
  23. Deshmukh M, Brasseur G and Daldal F (2000) Novel Rhodobacter capsulatus genes required for the biogenesis of various c-type cytochromes. Mol Microbiol 35: 123–138PubMedCrossRefGoogle Scholar
  24. Deshmukh M, May M, Zhang Y, Gabbert KK, Karberg KA, Kranz RG and Daldal F (2002) Overexpression of ccll-2 can bypass the need for the putative apocytochrome chaperone CycH during the biogenesis of c-type cytochromes. Mol Microbiol 46: 1069–1080PubMedCrossRefGoogle Scholar
  25. Deshmukh M, Turkarslan S, Astor D, Valkova-Valchanova M and Daldal F (2003) The dithiol:disulfide oxidoreductases DsbA and DsbB of Rhodobacter capsulatus are not directly involved in cytochrome c biogenesis, but their inactivation restores the cytochrome c biogenesis defect of CcdA-null mutants. J Bacteriol 185: 3361–3372PubMedCrossRefGoogle Scholar
  26. Drygas ME, Lambowitz AM and Nargang FE (1989) Cloning and analysis of the Neurospora crassa gene for cytochrome c heme lyase. J Biol Chem 264: 17897–17906PubMedGoogle Scholar
  27. Dumont ME, Ernst JF, Hampsey DM and Sherman F (1987) Identification and sequence of the gene encoding cytochrome c heme lyase in the yeast Saccharomyces cerevisiae. EMBO J 6: 235–241PubMedGoogle Scholar
  28. Eraso JM and Kaplan S (2000) From redox flow to gene regulation: Role of the PrrC protein of Rhodobacter sphaeroides 2.4.1. Biochemistry 39: 2052–2062PubMedCrossRefGoogle Scholar
  29. Erlendsson LS and Hederstedt L (2002) Mutations in the thioldisulfide oxidoreductases BdbC and BdbD can suppress cytochrome c deficiency of CcdA-defective Bacillus subtilis cells. J Bacteriol 184: 1423–1429PubMedCrossRefGoogle Scholar
  30. Erlendsson LS, Acheson RM, Hederstedt L and Le Brun NE (2003) Bacillus subtilis ResA is a thiol-disulfide oxidoreductase involved in cytochrome c synthesis. J Biol Chem 278: 17852–17858PubMedCrossRefGoogle Scholar
  31. Fabianek RA, Hennecke H and Thony-Meyer L (2000) Periplasmic protein thiol:disulfide oxidoreductases of Escherichia coli. FEMS Microbiol Rev 24: 303–316PubMedCrossRefGoogle Scholar
  32. Feissner RE, Richard-Fogal CL, Frawley ER and Kranz RG (2006a) ABC transporter-mediatedrelease of ahaem chaperone allows cytochrome c biogenesis. Mol Microbiol 61: 219–231PubMedCrossRefGoogle Scholar
  33. Feissner RE, Richard-Fogal CL, Frawley ER, Loughman JA, Earley KW and Kranz RG (2006b) Recombinant cytochromes c biogenesis systems I and II and analysis of haem delivery pathways in Escherichia coli. Mol Microbiol 60: 563–577PubMedCrossRefGoogle Scholar
  34. Garcia-Horsman JA, Berry E, Shapleigh JP, Alben JO and Gennis RB (1994) A novel cytochrome c oxidase from Rhodobacter sphaeroides that lacks CuA. Biochemistry 33: 3113–3119PubMedCrossRefGoogle Scholar
  35. Goldman BS and Kranz RG (2001) ABC transporters associated with cytochrome c biogenesis. Res Microbiol 152: 323–329PubMedCrossRefGoogle Scholar
  36. Goldman BS, Beckman DL, Bali A, Monika EM, Gabbert KK and Kranz RG (1997) Molecular and immunological analysis of an ABC transporter complex required for cytochrome c biogenesis. J Mol Biol 268: 724–738PubMedCrossRefGoogle Scholar
  37. Goldman BS, Beck DL, Monika EM and Kranz RG (1998) Transmembrane heme delivery systems. Proc Natl Acad Sci USA 95: 5003–5008PubMedCrossRefGoogle Scholar
  38. Gray KA, Grooms M, Myllykallio H, Moomaw C, Slaughter C and Daldal F (1994) Rhodobacter capsulatus contains a novel cb-type cytochrome c oxidase without a CuA center. Biochemistry 33: 3120–3127PubMedCrossRefGoogle Scholar
  39. Gray KA and Daldal F (1995) Mutational Studies of the Cytochrome bc 1 complex. In: Blankenship RE, Madigan, MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria (Advances in Photo synthesis and Respiration, Vol. 2), pp 747–774. Kluwer Academic Publishers, DordrechtGoogle Scholar
  40. Hiser L, Di Valentin M, Hamer AG and Hosier JP (2000) Cox 11p is required for stable formation of the CuB and magnesium centers of cytochrome c oxidase. J Biol Chem 275: 619–623PubMedCrossRefGoogle Scholar
  41. Hiser L and Hosier JP (2001) Heme A is not essential for assembly of the subunits of cytochrome c oxidase of Rhodobacter sphaeroides. J Biol Chem 276: 45403–45407PubMedCrossRefGoogle Scholar
  42. Horng YC, Cobine PA, Maxfield AB, Carr HS and Winge DR (2004) Specific copper transfer from the Cox 17 metallo-chaperone to both Scol and Cox11 in the assembly of yeast cytochrome c oxidase. J Biol Chem 279: 35334–35340PubMedCrossRefGoogle Scholar
  43. Iwata S, Ostermeier C, Ludwig B and Michel H (1995) Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376: 660–669PubMedCrossRefGoogle Scholar
  44. Jaksch M, Ogilvie I, Yao J, Kortenhaus G, Bresser HG, Gerbitz KD and Shoubridge EA (2000) Mutations in SCO2 are associated with a distinct form of hypertrophie cardiomyopathy and cytochrome c oxidase deficiency. Hum Mol Genet 9: 795–801PubMedCrossRefGoogle Scholar
  45. Kadokura H, Katzen F and Beckwith J (2003) Protein disulfide bond formation in prokaryotes. Annu Rev Biochem 72: 111–135PubMedCrossRefGoogle Scholar
  46. Kahn D, David M, Domergue O, Daveran ML, Ghai J, Hirsch PR and Batut J (1989) Rhizobium meliloti fixGHI sequence predicts involvement of a specific cation pump in symbiotic nitrogen fixation. J Bacteriol 171: 929–939PubMedGoogle Scholar
  47. Katzen F, Deshmukh M, Daldal F and Beckwith J (2002) Evolutionary domain fusion expanded the substrate specificity of the transmembrane electron transporter DsbD. EMBO J 21: 3960–3969PubMedCrossRefGoogle Scholar
  48. Khalimonchuk O, Ostermann K and Rodel G (2005) Evidence for the association of yeast mitochondrial ribosomes with Cox 11p, a protein required for the CuB site formation of cytochrome c oxidase. Curr Genet 47: 223–233PubMedCrossRefGoogle Scholar
  49. Koch HG, Hwang O and Daldal F (1998a) Isolation and characterization of Rhodobacter capsulatus mutants affected in cytochrome cbb 3 oxidase activity. J Bacteriol 180: 969–978PubMedGoogle Scholar
  50. Koch HG, Myllykallio H and Daldal F (1998b) Using genetics to explore cytochrome function and structure in Rhodobacter. Methods Enzymol 297: 81–94CrossRefGoogle Scholar
  51. Koch HG, Winterstein C, Saribas AS, Alben JO and Daldal F (2000) Roles of the ccoGHIS gene products in the biogenesis of the cbb 3-type cytochrome c oxidase. J Mol Biol 297: 49–65PubMedCrossRefGoogle Scholar
  52. Kranz RG (1989) Isolation of mutants and genes involved in cytochromes c biosynthesis in Rhodobacter capsulatus. J Bacteriol 171: 456–464PubMedGoogle Scholar
  53. Kranz R, Lill R, Goldman B, Bonnard G and Merchant S (1998) Molecular mechanisms of cytochrome c biogenesis: Three distinct systems. Mol Microbiol 29: 383–396PubMedCrossRefGoogle Scholar
  54. Kranz RG, Beckett CS and Goldman BS (2002) Genomic analyses of bacterial respiratory and cytochrome c assembly systems: Bordetella as a model for the system II cytochrome c biogenesis pathway. Res Microbiol 153: 1–6PubMedCrossRefGoogle Scholar
  55. Kulajta C, Thumfart JO, Haid S, Daldal F and Koch HG (2006) Multi-step assembly pathway of the cbb 3-type cytochrome c oxidase complex. J Mol Biol 355: 989–1004PubMedCrossRefGoogle Scholar
  56. Kvint K, Nachin L, Diez A and Nystrom T (2003) The bacterial universal stress protein: Function and regulation. Curr Opin Microbiol 6: 140–145PubMedCrossRefGoogle Scholar
  57. La Monica RF and Marrs BL (1976) The branched respiratory system of photosynthetically grown Rhodopseudomonas capsulata. Biochim Biophys Acta 423: 431–439PubMedCrossRefGoogle Scholar
  58. Lang SE, Jenney FE, Jr. and Daldal F (1996) Rhodobacter capsulatus CycH : A bipartite gene product with pleiotropic effects on the biogenesis of structurally different c-type cytochromes. J Bacteriol 178: 5279–5290PubMedGoogle Scholar
  59. Le Brun NE, Bengtsson J and Hederstedt L (2000) Genes required for cytochrome c synthesis in Bacillus subtilis. Mol Microbiol 36: 638–650PubMedCrossRefGoogle Scholar
  60. Lee D, Pervushin K, Bischof D, Braun M and Thony-Meyer L (2005) Unusual heme-histidine bond in the active site of a chaperone. J Am Chem Soc 127: 3716–3717PubMedCrossRefGoogle Scholar
  61. Lewin A, Crow A, Oubrie A and Le Brun NE (2006) Molecular basis for specificity of the extracytoplasmic thioredoxin ResA. J Biol Chem 281: 35467–35477PubMedCrossRefGoogle Scholar
  62. Mattatall NR, Jazairi J and Hill BC (2000) Characterization of YpmQ, an accessory protein required for the expression of cytochrome c oxidase in Bacillus subtilis. J Biol Chem 275: 28802–28809PubMedCrossRefGoogle Scholar
  63. McEwan AG, Lewin A, Davy SL, Boetzel R, Leech A, Walker D, Wood T and Moore GR (2002) PrrC from Rhodobacter sphaeroides, a homologue of eukaryotic Sco proteins, is a copper-binding protein and may have a thiol-disulfide oxido-reductase activity. FEBS Lett 518: 10–16PubMedCrossRefGoogle Scholar
  64. Metheringham R, Tyson KL, Crooke H, Missiakas D, Raina S and Cole JA (1996) Effects of mutations in genes for proteins involved in disulphide bond formation in the periplasm on the activities of anaerobically induced electron transfer chains in Escherichia coli K12. Mol Gen Genet 253: 95–102PubMedGoogle Scholar
  65. Monika EM, Goldman BS, Beckman DL and Kranz RG (1997) A thioreduction pathway tethered to the membrane for periplasmic cytochromes c biogenesis; in vitro and in vivo studies. J Mol Biol 271: 679–692PubMedCrossRefGoogle Scholar
  66. Nobrega MP, Nobrega FG and Tzagoloff A (1990) COX10 codes for a protein homologous to the ORF 1 product of Paracoccus denitrificans and is required for the synthesis of yeast cytochrome oxidase. J Biol Chem 265: 14220–14226PubMedGoogle Scholar
  67. Oh JI and Kaplan S (2002) Oxygen adaptation. The role of the CcoQ subunit of the cbb 3 cytochrome c oxidase of Rhodobacter sphaeroides 2.4.1. J Biol Chem 277: 16220–16228PubMedCrossRefGoogle Scholar
  68. Preisig O, Zufferey R and Hennecke H (1996) The Bradyrhizobium japonicum fixGHIS genes are required for the formation of the high-affinity cbb 3-type cytochrome oxidase. Arch Microbiol 165: 297–305PubMedCrossRefGoogle Scholar
  69. Reid E, Eaves DJ and Cole JA (1998) The CcmE protein from Escherichia coli is a haem-binding protein. FEMS Microbiol Lett 166: 369–375PubMedCrossRefGoogle Scholar
  70. Reid E, Cole J and Eaves DJ (2001) The Escherichia coli CcmG protein fulfils a specific role in cytochrome c assembly. Biochem J 355: 51–58PubMedCrossRefGoogle Scholar
  71. Ren Q and Thony-Meyer L (2001) Physical interaction of CcmC with heme and the heme chaperone CcmE during cytochrome c maturation. J Biol Chem 276: 32591–32596PubMedCrossRefGoogle Scholar
  72. Ren Q, Ahuja U and Thony-Meyer L (2002) A bacterial cytochrome c hemelyase. CcmF forms a complex with the heme chaperone CcmE and CcmH but not with apocytochrome c. J Biol Chem 277: 7657–7663PubMedCrossRefGoogle Scholar
  73. Richard-Fogal CL, Frawley ER, Feissner RE and Kranz RG (2007) Heme concentration dependence and metalloporphyrin inhibition of the system I and II cytochrome c assembly pathways. J Bacteriol 189: 455–463PubMedCrossRefGoogle Scholar
  74. Richter OM and Ludwig B (2003) Cytochrome c oxidase-structure, function and physiology of a redox-driven molecular machine. Rev Physiol Biochem Pharmacol 147: 47–74PubMedCrossRefGoogle Scholar
  75. Sambongi Y and Ferguson SJ (1996) Mutants of Escherichia coli lacking disulphide oxidoreductases DsbA and DsbB cannot synthesise an exogenous monohaem c-type cytochrome except in the presence of disulphide compounds. FEBS Lett 398: 265–268PubMedCrossRefGoogle Scholar
  76. Sanders C, Deshmukh M, Astor D, Kranz RG and Daldal F (2005a) Overproduction of CcmG and CcmFH(Rc) fully suppresses the c-type cytochrome biogenesis defect of Rhodobacter capsulatus CcmI-null mutants. J Bacteriol 187: 4245–4256PubMedCrossRefGoogle Scholar
  77. Sanders C, Turkarslan S and Daldal F (2005b) Periplasmic oxidative folding and cytochrome c maturation: A mechanistic view of stereo-selective heme attachment. In: van der Est A and Bruce D (eds) Photosynthesis: Fundamental Aspects and Global Perspectives, pp 421–424. Allen Press, LawrenceGoogle Scholar
  78. Sanders C, Boulay C and Daldal F (2007) Membrane-spanning and periplasmic segments of CcmI have distinct functions during cytochrome c biogenesis in Rhodobacter capsulatus. J Bacteriol 189: 789–800PubMedCrossRefGoogle Scholar
  79. Schaefer L, Ballabio A and Zoghbi HY (1996) Cloning and characterization of a putative human holocytochrome c-type synthetase gene (HCCS) isolated from the critical region for microphthalmia with linear skin defects (MLS). Genomics 34: 166–172PubMedCrossRefGoogle Scholar
  80. Schulz H, Hennecke H and Thony-Meyer L (1998) Prototype of a heme chaperone essential for cytochrome c maturation. Science 281: 1197–1200PubMedCrossRefGoogle Scholar
  81. Schulz H, Fabianek RA, Pellicioli EC, Hennecke H and Thony-Meyer L (1999) Heme transfer to the heme chaperone CcmE during cytochrome c maturation requires the CcmC protein, which may function independently of the ABC-transporter CcmAB. Proc Natl Acad Sci USA 96: 6462–6467PubMedCrossRefGoogle Scholar
  82. Setterdahl AT, Goldman BS, Hirasawa M, Jacquot P, Smith AJ, Kranz RG and Knaff DB (2000) Oxidation-reduction properties of disulfide-containing proteins of the Rhodobacter capsulatus cytochrome c biogenesis system. Biochemistry 39: 10172–10176PubMedCrossRefGoogle Scholar
  83. Smith D, Gray J, Mitchell L, Antholine WE and Hosler JP (2005) Assembly of cytochrome-c oxidase in the absence of assembly protein Surf 1p leads to loss of the active site heme. J Biol Chem 280: 17652–17656PubMedCrossRefGoogle Scholar
  84. Svensson-Ek M, Abramson J, Larsson G, Tornroth S, Brzezinski P and Iwata S (2002) The X-ray crystal structures of wild-type and EQ(I-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides. J Mol Biol 321: 329–339PubMedCrossRefGoogle Scholar
  85. Swem DL, Swem LR, Setterdahl A and Bauer CE (2005) Involvement of SenC in assembly of cytochrome c oxidase in Rhodobacter capsulatus. J Bacteriol 187: 8081–8087PubMedCrossRefGoogle Scholar
  86. Takamiya K. (1983) Properties of the cytochrome c oxidase activity of cytochrome b 561 from photoanaerobically grown Rhodopseudomonas sphaeroides. Plant and Cell Physiology 24: 1457–1462Google Scholar
  87. Thony-Meyer L (1997) Biogenesis of respiratory cytochromes in bacteria. Microbiol Mol Biol Rev 61: 337–376PubMedGoogle Scholar
  88. Thony-Meyer L (2002) Cytochrome c maturation: A complex pathway for a simple task? Biochem Soc Trans 30: 633–638PubMedCrossRefGoogle Scholar
  89. Thony-Meyer L (2003) A heme chaperone for cytochrome c biosynthesis. Biochemistry 42: 13099–13105PubMedCrossRefGoogle Scholar
  90. Williams JC, Sue C, Banting GS, Yang H, Glerum DM, Hendrickson WA and Schon EA (2005) Crystal structure of human SCO1: Implications for redox signaling by a mitochondrial cytochrome c oxidase ‘assembly’ protein. J Biol Chem 280: 15202–15211PubMedCrossRefGoogle Scholar
  91. Witt H and Ludwig B (1997) Isolation, analysis and deletion of the gene coding for subunit IV of cytochrome c oxidase in Paracoccus denitrificans. J Biol Chem 272: 5514–5517PubMedCrossRefGoogle Scholar
  92. Zannoni D, Melandri BA and Baccarini-Melandri A (1976) Energy transduction in photosynthetic bacteria. X. Composition and function of the branched oxidase system in wild type and respiration deficient mutants of Rhodopseudomonas capsulata. Biochim Biophys Acta 423: 413–430PubMedCrossRefGoogle Scholar
  93. Zannoni D and Daldal F (1993) The role of c-type cytochromes in catalyzing oxidative and photosynthetic electron transport in the dual functional plasmamembrane of facultative phototrophs. Arch Microbiol 160: 413–423PubMedCrossRefGoogle Scholar
  94. Zollner A, Rodel G and Haid A (1992) Molecular cloning and characterization of the Saccharomyces cerevisiae CYT2 gene encoding cytochrome-c 1-heme lyase. Eur J Biochem 207: 1093–1100PubMedCrossRefGoogle Scholar
  95. Zufferey R, Preisig O, Hennecke H and Thony-Meyer L (1996) Assembly and function of the cytochrome cbb 3 oxidase subunits in Bradyrhizobium japonicum. J Biol Chem 271: 9114–9119PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  • Carsten Sanders
    • 1
  • Serdar Turkarslan
    • 1
  • Ozlem Onder
    • 1
  • Elaine R. Frawley
    • 2
  • Robert G. Kranz
    • 2
  • Hans Georg Koch
    • 3
  • Fevzi Daldal
    • 1
    Email author
  1. 1.Department of Biology, Plant Science InstituteUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of BiologyWashington UniversitySaint LouisUSA
  3. 3.Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare ZellforschungUniversity of FreiburgFreiburgGermany

Personalised recommendations