Advertisement

Mixed stock analysis and the power of different classes of molecular markers in discriminating coastal and oceanic Atlantic cod (Gadus morhua L.) on the Lofoten spawning grounds, Northern Norway

  • Vidar WennevikEmail author
  • Knut Eirik Jørstad
  • Geir Dahle
  • Svein-Erik Fevolden
Part of the Developments in Hydrobiology book series (DIHY, volume 202)

Abstract

Atlantic cod (Gadus morhua) encompasses many different populations or stocks, which in part are managed separately. In the northeast Atlantic cod is divided into two main management units; northeast Arctic cod and coastal cod. These two groups have traditionally been separated by otolith classification. In this study, the power of different classes of genetic markers in separating the two cod groups was investigated. The variation in thirteen genetic markers, including allozymes, haemoglobin, the scDNA locus Pantophysin (Pan I) and a number of microsatellites was investigated, and mixed stock analysis and individual assignment tests were performed on samples comprising a mixture of individuals of putative coastal and oceanic type cod. The genetic analyses showed a large genetic differentiation between outer stations and stations located closer to the mainland shore. Mixed stock analysis and individual assignment tests used for estimation of stock proportions gave results similar to those obtained by otolith classification.

Keywords

Atlantic cod Mixed stock analysis Pan

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnason, E, & S. Palsson, 1996. Mitochondrial cytochrome B DNA sequence variation of Atlantic cod Gadus morhua, from Norway. Molecular Ecology 5: 715–724.CrossRefGoogle Scholar
  2. Arnason, E., S. Palsson & A. Arason, 1992. Gene flow and lack of differentiation in Atlantic cod, Gadus morhua L., from Iceland, and comparison of cod from Norway and Newfoundland. Journal of Fish Biology 40: 751–770.CrossRefGoogle Scholar
  3. Arnason, E., P. H. Petersen, K. Kristinsson, H. Sigurgislason & S. Palsson, 2000. Mitochondrial cytochrome B DNA sequence variation of Atlantic cod from Iceland and Greenland. Journal of Fish Biology 56: 409–430.Google Scholar
  4. Banks, M. A. & W. Eichert, 2000. Whichrun (Version 3.2): A computer program for population assignment of individuals based on multilocus genotype data. Journal of Heredity 91: 87–89.PubMedCrossRefGoogle Scholar
  5. Banks, M. A., W. Eichert & J. B. Olsen, 2003. Which genetic loci have greater population assignment power?. Bioinformatics 19: 1436–1438.PubMedCrossRefGoogle Scholar
  6. Beacham, T. D., J. Brattey, K. M. Miller, K. D. Le & R. E. Withler, 2002. Multiple stock structure of Atlantic cod (Gadus morhua) off Newfoundland and Labrador determined from genetic variation. ICES Journal of Marine Science 59: 650–665.CrossRefGoogle Scholar
  7. Beaumont, M. A., 2005. Adaptation and speciation: what can FST tell us?. Trends in Ecology & Evolution 20: 435–440.CrossRefGoogle Scholar
  8. Belkhir K., P. Borsa, L. Chikhi, N. Raufaste & F. Bonhomme, 2004. GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome. Populations, Interactions, CNRS UMR 5171, Université de Montpellier II, Montpellier (France).Google Scholar
  9. Berg, E., T. Sarvas, A. Harbitz, S. E. Fevolden & A. B. Salberg, 2005. Accuracy and precision in stock separation of north-east Arctic and Norwegian coastal cod by otoliths — comparing readings, image analysis and a genetic method. Marine and Freshwater Research 56: 753–762.CrossRefGoogle Scholar
  10. Borge, A., Å. Fotland, H. Gjøsæ;ter & H. Mjanger 2002. Manual for Sampling of Fish and Crustaceans, version 1.0. Institute of Marine Research.Google Scholar
  11. Borisov, V. M., V. P. Ponomarenko & N. A. Yaragina, 1999. A critical review of the population status in coastal cod (Gadus morhua) from Barents Sea region and northern Norway. Journal of Ichthyology 39: 18–28.Google Scholar
  12. Brix, O., S. Thorkildsen & A. Colosimo, 2004. Temperature acclimation modulates the oxygen binding properties of the Atlantic cod (Gadus morhua L.) genotypes-HbI*1/1, HbI*1/2, and HbI*2/2—by changing the concentrations of their major haemoglobin components (results from growth studies at different temperatures). Comparative Biochemistry and Physiology—Part A: Molecular & Integrative Physiology 138: 241–251.CrossRefGoogle Scholar
  13. Brooker, A. L., D. Cook, P. Bentzen, J. M. Wright & R. W. Doyle, 1994. Organization of microsatellites differs between mammals and cold-water teleost fishes. Canadian Journal of Fisheries and Aquatic Sciences 51: 1959–1966.CrossRefGoogle Scholar
  14. Cadrin, S. X., K. D. Friedland, & J. R. Waldman, 2005. Stock Identification Methods—Applications in Fishery Science. Elsevier Academic Press, Burlington, MA. pp 719.Google Scholar
  15. Canino, M. F. & P. Bentzen, 2004. Evidence for positive selection at the Pantophysin (Pan I) locus in walleye pollock, Theragra chalcogramma. Molecular Biology and Evolution 21: 1391–1400.PubMedCrossRefGoogle Scholar
  16. Canino, M. F., P. T. O’Reilly, L. Hauser & P. Bentzen, 2005. Genetic differentiation in walleye pollock (Theragra chalcogramma) in response to selection at the pantophysin (Pan I) locus. Canadian Journal of Fisheries and Aquatic Sciences 62: 2519–2529.CrossRefGoogle Scholar
  17. Carvalho, G. R. & L. Hauser, 1994. Molecular genetics and the stock concept in fisheries. Reviews in Fish Biology and Fisheries 4: 326–350.CrossRefGoogle Scholar
  18. Case, R. A. J., W. F. Hutchinson, L. Hauser, C. Van Oosterhout & G. R. Carvalho, 2005. Macro-and micro-geographic variation in pantophysin (Pan I) allele frequencies in NE Atlantic cod Gadus morhua Marine Ecology-Progress Series 301: 267–278.CrossRefGoogle Scholar
  19. Case, R. A. J., W. F. Hutchinson, L. Hauser, V. Buehler, C. Clemmesen, G. Dahle, O.S. Kjesbu, E. Moksness, H. Otterå, H. Paulsen, T. Svåsand, A. Thorsen & G. Carvalho, 2006. Association between growth and Pan I* genotype within Atlantic cod full-sibling families. Transactions of the American Fisheries Society 135: 241–250.CrossRefGoogle Scholar
  20. Cornuet, J.-M., S. Piry, G. Luikart, A. Estoup & M. Solignac, 1999. New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics 153: 1989–2000.PubMedGoogle Scholar
  21. Dahle, G., 1991. Cod, Gadus morhua L, populations identified by mitochondrial DNA. Journal of Fish Biology 38: 295–303.CrossRefGoogle Scholar
  22. Dahle, G. & K. E. Jørstad, 1993. Haemoglobin variation in coda reliable marker for Arctic cod (Gadus morhua L.). Fisheries Research 16: 301–311.CrossRefGoogle Scholar
  23. Dawson, K. J. & K. Belkhir, 2001. A Bayesian approach to the identification of panmictic populations and the assignment of individuals. Genetical Research 78: 59–77.PubMedCrossRefGoogle Scholar
  24. Fevolden, S. E. & G. H. Pogson, 1997. Genetic divergence at the synaptophysin (SypI) locus among Norwegian coastal and north-east arctic populations of Atlantic cod. Journal of Fish Biology 51: 895–908.Google Scholar
  25. Fournier, D. A., T. D. Beacham, B. E. Riddell & C. A. Busack, 1984. Estimating stock composition in mixed stock fisheries using morphometric, meristic, and electrophoretic characteristics. Canadian Journal of Fisheries and Aquatic Sciences 41: 400–408.CrossRefGoogle Scholar
  26. Frydenberg, O., D. Møller, G. Næ;vdal & K. Sick, 1965. Haemoglobin polymorphism in Norwegian cod populations. Hereditas-Genetiskt Arkiv 53: 257.Google Scholar
  27. Frydenberg, O., J. T. Nielsen & V. Simonsen, 1969. The maintenance of haemoglobin polymorphism of the cod. Japanese. Journal of Genetics 44: 160–165.Google Scholar
  28. Goudet, J., 2001. FSTAT: A Program to Estimate and Test Gene Diversities and Fixation Indices. Version 2.9.3.2 Available from http://www.unil.ch/izea/softwares/fstat.html.Google Scholar
  29. Hansen, M. M., E. Kenchington & E. Nielsen, 2001. Assigning individual fish to populations using microsatellite markers. Fish and Fisheries 2: 93–112.CrossRefGoogle Scholar
  30. Husebø, Å., A. K. Imsland & G. Næ;vdal, 2004. Haemoglobin variation in cod: a description of new variants, and their geographical distribution. Sarsia 89: 369–378.CrossRefGoogle Scholar
  31. Hutchinson, W. F., G. R. Carvalho & S. I. Rogers, 2001. Marked genetic structuring in localised spawning populations of cod Gadus morhua in the North Sea and adjoining waters, as revealed by microsatellites. Marine Ecology-Progress Series 223: 251–260.CrossRefGoogle Scholar
  32. Hylen, A., 1964. Coastal cod and skrei in the Lofoten area. Fiskeridirektoratets. Skrifter Serie Havundersøkelser 13:27–42.Google Scholar
  33. Jonsdottir, O. D. B., A. K. Danielsdottir & G. Næ;vdal, 2001. Genetic differentiation among Atlantic cod (Gadus morhua L.) in Icelandic waters: temporal stability. ICES Journal of Marine Science 58: 114–122.CrossRefGoogle Scholar
  34. Jørstad, K. E., 1984. Genetic analyses of cod in Northern Norway. Flødevigen Rapportserie 1: 745–760.Google Scholar
  35. Jørstad, K. E. & G. Næ;vdal, 1989. Genetic variation and population structure of cod, Gadus morhua L, in some fjord in northern Norway. Journal of Fish Biology 35: 245–252.Google Scholar
  36. Karlsson, S. & J. Mork, 2003. Selection-induced variation at the Pantophysin locus (Pan I) in a Norwegian fjord population of cod (Gadus morhua L.). Molecular Ecology 12: 3265–3274.PubMedCrossRefGoogle Scholar
  37. Karlsson, S. & J. Mork, 2005. Deviation from Hardy-Weinberg equilibrium, and temporal instability in allele frequencies at microsatellite loci in a local population of Atlantic cod. ICES Journal of Marine Science 62: 1588–1596.CrossRefGoogle Scholar
  38. Karpov, A. K. & G. G. Novikov, 1980. Haemoglobin alloforms in cod, Gadus morhua (Gadiformes, Gadidae), their functional characteristics and occurrence in populations. Journal of Ichthyology 20: 45–49.Google Scholar
  39. Knutsen, H., P. E. Jorde, C. Andre & N. C. Stenseth, 2003. Fine-scaled geographical population structuring in a highly mobile marine species: the Atlantic cod. Molecular Ecology 12: 385–394.PubMedCrossRefGoogle Scholar
  40. Koljonen, M. L., J. J. Pella & M. Masuda, 2005. Classical individual assignments versus mixture modeling to estimate stock proportions in Atlantic salmon (Salmo salar) catches from DNA microsatellite data. Canadian Journal of Fisheries and Aquatic Sciences 62: 2143–2158.CrossRefGoogle Scholar
  41. Løken, S. & T. Pedersen, 1996. Effect of parent type and temperature on vertebrae number in juvenile cod, Gadus morhua (L), in Northern Norway. Sarsia 80: 293–298.Google Scholar
  42. Millar, R. B., 1987. Maximum-likelihood-estimation of mixed stock fishery composition. Canadian Journal of Fisheries and Aquatic Sciences 44: 583–590.CrossRefGoogle Scholar
  43. Miller, M. P. 1997. Tools for population genetic analyses (TFPGA) 1.3. Available from: http://www.marksgenetic software.net/tfpga.htm.Google Scholar
  44. Miller, K. M., K. D. Le & T. D Beacham, 2000. Development of tri-and tetranucleotide repeat microsatellite loci in Atlantic cod (Gadus morhua). Molecular Ecology 9: 238–239.PubMedCrossRefGoogle Scholar
  45. Mork, J. & M. Giæ;ver, 1999. Genetic structure of cod along the coast of Norway: results from isozyme studies. Sarsia 84: 157–168.Google Scholar
  46. Mork, J., N. Ryman, G. Ståhl, F. Utte & G. Sundnes, 1985. Genetic variation in Atlantic cod (Gadus morhua) throughout its range. Canadian Journal of Fisheries and Aquatic Sciences 42: 1580–1587.CrossRefGoogle Scholar
  47. Møller, D., 1966. Genetic differences between cod groups in Lofoten area. Nature 212: 824.PubMedCrossRefGoogle Scholar
  48. Møller, D., 1968. Genetic diversity in spawning cod along the Norwegian coast. Hereditas-Genetiskt Arkiv 60: 1.Google Scholar
  49. Nei, M., 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590.PubMedGoogle Scholar
  50. Nielsen, E. E. & E. Kenchington, 2001. A new approach to prioritizing marine fish and shellfish populations for conservation. Fish and Fisheries 2: 328–343.CrossRefGoogle Scholar
  51. Nielsen, E.E., M.M. Hansen, D.E. Ruzzante, D. Meldrup & P. Gronkjaer, 2003. Evidence of a hybrid-zone in Atlantic cod (Gadus morhua) in the Baltic and the Danish Belt Sea revealed by individual admixture analysis. Molecular Ecology 12: 1497–1508.PubMedCrossRefGoogle Scholar
  52. Nielsen, E. E., M. M. Hansen & D. Meldrup, 2006. Evidence of microsatellite hitch-hiking selection in Atlantic cod (Gadus morhua L.): implications for inferring population structure in nonmodel organisms. Molecular Ecology 15: 3219–3229.PubMedCrossRefGoogle Scholar
  53. Nordeide, J. T., 1998. Coastal cod and north-east arctic, cod— do they mingle at the spawning grounds in Lofoten? Sarsia 83: 373–379.Google Scholar
  54. Nordeide, J.T. & E. Kjellsby, 1999. Sound from spawning cod at their spawning grounds. ICES Journal of Marine Science 56:326–332.CrossRefGoogle Scholar
  55. Nordeide, J. T. & I. H. Pettersen, 1998. Haemoglobin frequencies and vertebral numbers of cod (Gadus morhua L.) off northern Norway — Test of a population structure hypothesis. Ices Journal of Marine Science 55: 134–140.CrossRefGoogle Scholar
  56. O’Reilly, P. T., M. F. Canino, K. M. Bailey & P. Bentzen, 2000. Isolation of twenty low stutter di-and tetranucleotide microsatellites for population analyses of walleye pollock and other gadoids. Journal of Fish Biology 56: 1074–1086.CrossRefGoogle Scholar
  57. O’Reilly, P. T., M. F. Canino, K. M. Bailey & P. Bentzen, 2004. Inverse relationship between FST and microsatellite polymorphism in the marine fish, walleye pollock (Theragra chalcogramma): implications for resolving weak population structure. Molecular Ecology 13: 1799–1814.CrossRefGoogle Scholar
  58. Paetkau, D, W. Calvert, I. Stirling & C. Strobeck, 1995. Microsatellite analysis of population-structure in Canadian polar bears. Molecular Ecology 4: 347–354.PubMedCrossRefGoogle Scholar
  59. Pampoulie C, D. E. Ruzzante, V. Chosson, T. D. Jorundsdottir, L. Taylor, V. Thorsteinsson, A. K. Danielsdottir & G. Marteinsdottir, 2006. The genetic structure of Atlantic cod (Gadus morhua) around Iceland: Insight from microsatellites, the Pan I locus, and tagging experiments. Canadian Journal of Fisheries and Aquatic Sciences 63: 2660–2674.CrossRefGoogle Scholar
  60. Pella, J. J. & M. Masuda, 2001. Bayesian methods for analysis of stock mixtures from genetic characters. Fishery Bulletin 99: 151–167.Google Scholar
  61. Pella, J. J. & G. B. Milner, 1987. Use of genetic marks in stock composition analysis, In Ryman, N. & F. Utter (eds), Population Genetics and Fishery Management. University of Washington Press, Seattle, WA, USA, 247–276.Google Scholar
  62. Petersen, M. F. & J. F. Steffensen, 2003. Preferred temperature of juvenile Atlantic cod Gadus morhua with different haemoglobin genotypes at normoxia and moderate hypoxia. Journal of Experimental Biology 206: 359–364.PubMedCrossRefGoogle Scholar
  63. Piry, S., A. Alapetite, J.M. Cornuet, D. Paetkau, L. Baudouin & A. Estoup, 2004. Geneclass2: a software for genetic assignment and first-generation migrant detection. Journal of Heredity 95: 536–539.PubMedCrossRefGoogle Scholar
  64. Pogson, G. H., K. A. Mesa & R. G. Boutilier, 1995. Genetic population structure and gene flow in the Atlantic cod Gadus morhua — a comparison of allozyme and nuclear RFLP loci. Genetics 139: 375–385.PubMedGoogle Scholar
  65. Pogson, G. H., 2001. Nucleotide polymorphism and natural selection at the Pantophysin (Pan I) locus in the Atlantic cod, Gadus morhua (L.). Genetics 157: 317–330.PubMedGoogle Scholar
  66. Pogson, G. H. & K. A. Mesa, 2004. Positive Darwinian selection at the pantophysin (Pan I) locus in marine Gadid fishes. Molecular Biology and Evolution 21: 65–75.PubMedCrossRefGoogle Scholar
  67. Pogson, G. H. & S. E. Fevolden, 2003. Natural selection and the genetic differentiation of coastal and Arctic populations of the Atlantic cod in northern Norway: a test involving nucleotide sequence variation at the pantophysin (Pan I) locus. Molecular Ecology 12: 63–74.PubMedCrossRefGoogle Scholar
  68. Pritchard, J. K., M. Stephens & P. Donnelly, 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959.PubMedGoogle Scholar
  69. Rannala, B. & J. L. Mountain, 1997. Detecting immigration by using multilocus genotypes. Proceedings of the National Academy of Sciences of the United States of America 94: 9197–9201.PubMedCrossRefGoogle Scholar
  70. Raymond, M. & F. Rousset, 1995. Genepop (Version-1.2) — Population-genetics software for exact tests and ecumenicism. Journal of Heredity 86: 248–249.Google Scholar
  71. Rice, W. R., 1989. Analyzing tables of statistics tests. Evolution 43: 223–225.CrossRefGoogle Scholar
  72. Rollefsen, G., 1933. The otoliths of cod. Fiskeridirektoratets skrifter, serie Havundersokelser 4: 1–14.Google Scholar
  73. Rollefsen, G., 1954. Observations on the cod and cod fisheries of Lofoten. Rapports et Procés-Verbaux des Réunions du Conseil International Pour ľExploration de la Mer 133: 40–47.Google Scholar
  74. Ruzzante, D. E., C. T. Taggart, C. Cook & S. Goddard, 1996. Genetic differentiation between inshore and offshore Atlantic cod (Gadus morhua) off Newfoundland: Microsatellite DNA variation and antifreeze level. Canadian Journal of Fisheries and Aquatic Sciences 53: 634–645.CrossRefGoogle Scholar
  75. Ruzzante, D. E., C. T. Taggart, D. Cook & S. V. Goddard, 1997. Genetic differentiation between inshore and offshore Atlantic cod (Gadus morhua) off Newfoundland: a test and evidence of temporal stability. Canadian Journal of Fisheries and Aquatic Sciences 54: 2700–2708.CrossRefGoogle Scholar
  76. Ruzzante, D. E., C. T. Taggart & D. Cook, 1999. A review of the evidence for genetic structure of cod (Gadus morhua) populations in the NW Atlantic and population affinities of larval cod off Newfoundland and the Gulf of St. Lawrence. Fisheries Research 43: 79–97.CrossRefGoogle Scholar
  77. Ruzzante, D. E., C. T. Taggart, S. Lang & D. Cook, 2000. Mixed-stock analysis of Atlantic cod near the Gulf of St. Lawrence based on microsatellite DNA. Ecological Applications 10: 1090–1109.CrossRefGoogle Scholar
  78. Ryman, N., F. Utter & L. Laikre. 1995. Protection of intraspecific biodiversity of exploited fishes. Reviews in Fish Biology and Fisheries 5: 417–446.CrossRefGoogle Scholar
  79. Sarvas, T. H. & S. E. Fevolden, 2005. The scnDNA Locus Pan I reveals concurrent presence of different populations of Atlantic cod (Gadus morhua L.) within a single fjord. Fisheries Research 76: 307–316.CrossRefGoogle Scholar
  80. Sick, K., 1961. Haemoglobin polymorphism in fishes. Nature 35: 894–896.CrossRefGoogle Scholar
  81. Sick, K., 1965. Haemoglobin polymorphism of cod in the North Sea and the North Atlantic Ocean. Hereditas 54: 49–69.PubMedCrossRefGoogle Scholar
  82. Skarstein, T. H., J. I. Westgaard. & S. E. Fevolden, 2006. Comparing microsatellite variation in north-east Atlantic cod (Gadus morhua L.) to genetic structuring as revealed by the pantophysin (Pan I) locus. Journal of Fish Biology 69(Suppl. C): 261–262.Google Scholar
  83. Smith, P. J., A. J. Birley, A. Jamieson & C. A. Bishop, 1989. Mitochondrial DNA in the Atlantic cod, Gadus morhua: lack of genetic divergence between eastern and western populations. Journal of Fish Biology 34: 369–373.CrossRefGoogle Scholar
  84. Stenevik, E. K. & S. Sundby, 2005. Buoyancy of eggs of Norwegian coastal cod from different areas along the coast. GLOBEC International Newsletter 11(1): 23.Google Scholar
  85. Storr-Paulsen, M., K. Wieland, H. Hovgard & H. J. Ratz, 2004. Stock structure of Atlantic cod (Gadus morhua) in West Greenland waters: Implications of transport and migration. Ices Journal of Marine Science 61: 972–982.CrossRefGoogle Scholar
  86. Vikebø, F., S. Sundby, B. Ådlandsvik & Ø. Fiksen, 2005. The combined effect of transport and temperature on distribution and growth of larvae and pelagic juveniles of Arcto-Norwegian cod. ICES Marine Science Symposia 62: 1375–1386.CrossRefGoogle Scholar
  87. Waples, R. S. & P. E. Smouse, 1990. Gametic disequilibrium analysis as a means of identifying mixtures of salmon populations. American Fisheries Society Symposium 7: 439–458.Google Scholar
  88. Ward, R. D., 2000. Genetics in fisheries management. Hydrobiologia 420: 191–201.CrossRefGoogle Scholar
  89. Waser, P. M. & C. Strobeck, 1998. Genetic signatures of interpopulation dispersal. Trends in Ecology & Evolution 13: 43–44.CrossRefGoogle Scholar
  90. Xu, S. Z., C. J. Kobak & P. E. Smouse, 1994. Constrained least-squares estimation of mixed population stock composition from MtDNA haplotype frequency data. Canadian Journal of Fisheries and Aquatic Sciences 51: 417–425.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Vidar Wennevik
    • 1
    Email author
  • Knut Eirik Jørstad
    • 1
  • Geir Dahle
    • 1
  • Svein-Erik Fevolden
    • 2
  1. 1.Institute of Marine ResearchBergenNorway
  2. 2.Norwegian College of Fishery ScienceUniversity of TromsøTromsoNorway

Personalised recommendations