Synthesis, Characterization, and Application of Magnetic Nanocomposites for the Removal of Heavy Metals from Industrial Effluents

  • Zhenghe Xu
  • Jie Dong


Magnetic nanocomposites with tailored surface functionalities have found a wide range of applications, including biological cell separation, waste remediation, gas purification, and raw material recovery from complex multiphase systems. The challenge to magnetic nanocomposite particles for these applications is to synthesize the particles of strong magnetic properties with high density of reactive functional groups, diversity of functionalities, and durability of surface films. In this chapter, the research and development of magnetic nanocomposite particles for applications to industrial effluent treatment are reviewed. Molecular self-assembly (SA), direct silanation, and mesoporous silica coating on magnetic particles were developed for the preparation of magnetic nanocomposites.

In SA, 16-mercaptohexadecanoic acid was anchored onto the γ-Fe2O3 surface through chemical bonding between the carboxylic head group of the surfactant and iron on γ-Fe2O3 surface, leaving the thiol or disulfide groups reactive. In the direct silanation, 3-aminopropyl triethoxy silane (APTES) films were silanized on bare magnetic particles from toluene and water. To improve the stability of silanized films, two-step silica-coating method was developed using sol–gel reaction, followed by dense-liquid silica coating. APTES films prepared by the silanation on the two-step silica-coated magnetic particles were found to be more robust than the ones silanized on bare magnetic particles. Furthermore, an innovative procedure of synthesizing mesoporous silica coatings on magnetic particles was developed to increase specific surface area of controlled pore sizes. This approach was based on the molecular templating, followed by sol–gel and templates removal. The resultant products showed a significant increase in specific surface area and were amenable for functionalization by silanation reaction.

The functionalized magnetic nanocomposites were effective for removal or recovery of heavy metal ions such as Cu2+, Zn2+, Ni2+, Ag+, and Hg2+ from aqueous solutions. Loaded metal ions could be stripped off by acid washing. Selective separation of different metal ions was achieved by controlling the solution pH. Magnetic nanocomposites particles with reactive functional groups have great potential applications in industrial, biological, and pharmacological processes.


Magnetic nanocomposite particles industrial effluent treatment heavy metal removal molecular self-assembly direct silanization two-step silica coating mesoporous silica coating molecular templating sol–gel reaction templates removal surface functionalization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alloway, B.J. (Ed.) (1995) Heavy Metals in Soils. Chapman and Hall, Glasgow, UK. Chapters 6, 8, 9 and 11.Google Scholar
  2. 2.
    McDonald, D. G., Grandt, A. F. (1981) Limestone – Lime Treatment of Acid Mine Drainage-Full Scale. EPA Project Summary. EPA-600/S7-81-033.Google Scholar
  3. 3.
    Yamamura, S. (2000) Drinking Water Guidelines and Standards, World Health Organization, Geneva, Switzerland, Google Scholar
  4. 4.
    Maximum Contaminant Level Goals and National Primary Drinking Water Regulation for Lead and Copper; Proposed Rule (1996) Google Scholar
  5. 5.
    Nuñez, L., Kaminski, M. D. (1998) Chem. Technol. 9, 41.Google Scholar
  6. 6.
    Xu, Z., Liu, Q., Finch, J. A. (1997) Appl. Surf. Sci. 120, 269.CrossRefGoogle Scholar
  7. 7.
    Shiraishi, Y., Nishimura, G., Hirai, T., Komasawa, I. (2002) Ind. Eng. Chem. Res. 41, 5065.CrossRefGoogle Scholar
  8. 8.
    Lee, B., Kim, Y., Lee, H., Yi, J. (2001) Micropor. Mesopor. Mater 50, 77.CrossRefGoogle Scholar
  9. 9.
    Stumm, W., Morgan, J. J. (1995) Aquatic Chemistry, Jon Wiley & Sons, Inc., New York, 804.Google Scholar
  10. 10.
    Lee, J. S., Gomes-Salazar, S., Tavlarides, L. L. (2001) React. Funct. Polym. 49, 159.CrossRefGoogle Scholar
  11. 11.
    Yu, M., Tian, W., Sun, D., Shen, W., Wang, G., Xu, N. (2001) Anal. Chim. Acta. 428, 209.CrossRefGoogle Scholar
  12. 12.
    Nam, K. H., Tavlarides, L. L. (2003) Solvent Extr. Ion Exc., 21, 899.CrossRefGoogle Scholar
  13. 13.
    Pinfold, T. A. (1972) Ion Flotation, in Robert Lemlich (Ed.), Adsorptive Bubble Separation Techniques, Academic Press, New York.Google Scholar
  14. 14.
    Nicol, S. K., Galvin, K. P. and Engel, M. D. (1992) Miner. Eng. 5, 1259.CrossRefGoogle Scholar
  15. 15.
    Berg, E. W., Downey, D. M. (1980) Anal. Chim. Acta 120, 273.CrossRefGoogle Scholar
  16. 16.
    Willians, R. A. (Ed.). (1992) Colloid and Surface Engineering: Application.c in the Process Industries, Butterworth Heinemann, Oxford, UK. Chapter 8.Google Scholar
  17. 17.
    Booker, N. A., Keir, D., Priestley, A., Rithchie, C. D., Sudarmana, D. L., Woods, M. A. (1991) Water Sci. Technol. 123, 1703.Google Scholar
  18. 18.
    Sing, K. S. (1994) Technol. Profile 21, 60.Google Scholar
  19. 19.
    Safarik, I., Safarikova, M., Buricova, V. (1995) Collect. Czech. Chem. Commun. 60, 1448.CrossRefGoogle Scholar
  20. 20.
    Wu, R., Qu, J., Chen, Y. (2005) Water Res. 39, 630.CrossRefGoogle Scholar
  21. 21.
    Orbell, J. D., Godhino, L., Bigger, S. W., Nguyen, T. M., Ngeh, L. N. (1997) J. Chem. Edu. 74, 1446.CrossRefGoogle Scholar
  22. 22.
    Borai, E. H., El-Sofany, E. A., Morocos, T. N. (2007) Adsorption 13, 95.CrossRefGoogle Scholar
  23. 23.
    Feng, D., Aldrich, C., Tan, H. (2000) Hydrometallurgy 56, 359.CrossRefGoogle Scholar
  24. 24.
    Denizli, A., Özkan, G., Arica, M. Y. (2000) J. Appl. Polym. Sci. 78, 81.CrossRefGoogle Scholar
  25. 25.
    Duguet, E., Vasseur, S., Mornet, S., Devoisselle, J. M. (2006) Nanomedicine 1, 257.CrossRefGoogle Scholar
  26. 26.
    Gupta, A. K., Naregalkar, R. R., Vaidya, V. D., Gupta, M. (2007) Nanomedicin 2, 23.CrossRefGoogle Scholar
  27. 27.
    Gao, X., Yu, K. M. K., Tam, K. Y., Tsang, S. C. (2003) Chem. Commun. 24, 2998.CrossRefGoogle Scholar
  28. 28.
    Rudge, S. R., Kurtz, T. L., Vessely, C. R., Catterall, L. G., Williamson, D. L. (2000) Biomaterials 21, 1411.CrossRefGoogle Scholar
  29. 29.
    Wu, P., Xu, Z. (2005) Ind. Eng. Chem. Res. 44, 816.CrossRefGoogle Scholar
  30. 30.
    Skold, C. N. (2007) U.S. Patent 7,169,618.Google Scholar
  31. 31.
    Giaever, I. (1976) U.S. Patent 3,970,518.Google Scholar
  32. 32.
    Whitehead, R. A., Chagnon, M. S., Groman, E. V., Josephson, L. (1985) U.S. Patent 4,554,088.Google Scholar
  33. 33.
    Phanapavudhikul, P., Waters, J. A., Perez de Oritiz, E. S. (2003) J. Environ. Sci. Heal A 38, 2277.CrossRefGoogle Scholar
  34. 34.
    Liberti, P. A., Piccoli, S. P. (1996) U.S. Patent 5,512,332.Google Scholar
  35. 35.
    Liberti, P. A., Pino, M. A. (1997) U.S. Patent 5,597,531Google Scholar
  36. 36.
    Yen, S.-P. S., Rembaum, A., Molday, R. S. (1979) U.S. Patent 4,157,323.Google Scholar
  37. 37.
    Daniel, J.-C., Schuppiser, J.-L., Tricot, M. (1982) U.S. Patent 4,358,388.Google Scholar
  38. 38.
    Liu, X., Guan, Y., Ma, Z., Liu, H. (2004) Langmuir 20, 10278–10282.CrossRefGoogle Scholar
  39. 39.
    Pich, A., Bhattacharya, S., Ghosh, A., Adler, H.-J. P. (2005) Polymer 46, 4596.Google Scholar
  40. 40.
    Senyei, A. E., Widder, K. J. (1980) U.S. Patent 4,230,685.Google Scholar
  41. 41.
    Molday, R. S. (1984) U.S. Patent 4,452,773.Google Scholar
  42. 42.
    Owen, C. S., Silvia, J. C., D'Angelo, L., Liberti, P. A. (1989) U.S. Patent 4,795,698.Google Scholar
  43. 43.
    Palmacci, S., Josephson, L. (1993) U.S. Patent 5,262,176.Google Scholar
  44. 44.
    Ugelstad, J., Ellingsen, T., Berge, A., Helgee, O. B. (1987) U.S. Patent 4,654,267.Google Scholar
  45. 45.
    Groman, E. V., Josephson, L., Lewis, J. M. (1989) U.S. Patent 4,827,945.Google Scholar
  46. 46.
    Li, L., Fan, M., Brown, R. C., Leeuwen, J. V., Wang, J., Wang, W., Song, Y., Zhang, P. (2006) Crit. Rev. Env. Sci. Technol. 36, 405.CrossRefGoogle Scholar
  47. 47.
    Lu, A. H., Salabas, E. L., Schuth, F. (2007) Angew. Chem. Int. Edit. 46, 1222.CrossRefGoogle Scholar
  48. 48.
    Liu, Q. (1996) An innovative approach in magnetic carrier technology, PhD. Thesis, McGill University, Montreal.Google Scholar
  49. 49.
    Ulman, A. (1991) An Introduction to Ultrathin Organic Films and Langmuir-Blodgett to Self-Assembly, Academic, San Diego.Google Scholar
  50. 50.
    Pomerantz, M., Segmuller, A., Netzer, L., Sagiv, J. (1986) Thin Solid Films 132, 153.CrossRefGoogle Scholar
  51. 51.
    Netzer, L., Iscovici, R., Sagiv, J. (1983) Thin Solid Films 99, 235.CrossRefGoogle Scholar
  52. 52.
    Allara, D. L., Nuzzo, R. G. (1985) Langmuir 1, 52.CrossRefGoogle Scholar
  53. 53.
    Schlotter, N. E., Porter, M. D., Bright, T. B., Allara, D. L. (1986) Chem. Phys. Lett. 132, 93.CrossRefGoogle Scholar
  54. 54.
    Laibinis, P. E., Hickman, J. J., Wrighton, M. S., Whitesides, G. M. (1989) Science 245, 845.CrossRefGoogle Scholar
  55. 55.
    Bain, C. D., Troughton, E. B., Tao, Yu-Tai, Evall, J., Whitesides, G. M., Nuzzo, R. G. (1989) J. Am. Chem. Soc. 111, 321.CrossRefGoogle Scholar
  56. 56.
    Walczak, M. M., Chung, C., Stole, S. M., Widrig, C. A., Porter, M.D. (1991) J. Am. Chem. Soc. 113, 2370.CrossRefGoogle Scholar
  57. 57.
    Parikh, A. N., Allara, D. L., Azouz, I. B., Rondelez, F. (1994) J. Phys.Chem. 98, 7577.CrossRefGoogle Scholar
  58. 58.
    Yoon, R.-H., Flinn, D. H., Guzonas, D. A. (1994) Colloids Surf. 87, 163.CrossRefGoogle Scholar
  59. 59.
    Folkers, J. P., Gorman, L. B., Laibinis, P. E., Buchholz, S., Whitesides, G. M., Nuzzo, R. G. (1996) Langmuir 11, 813.CrossRefGoogle Scholar
  60. 60.
    Allara, D. L., Hebard, A. F., Padden, F. J., Nuzzo, R. G., Falcone, D. R. (1983) J. Vac. Sci. Technol. AI(2), 376.Google Scholar
  61. 61.
    Ihs, A., Liedberg, B. (1991) J. Colloid Interface Sci. 144, 283.CrossRefGoogle Scholar
  62. 62.
    Uvdal, K., Bodo, P., Liedberg, B. (1992) J. Colloid Interface Sci. 149, 163.CrossRefGoogle Scholar
  63. 63.
    Goss, C. A., Charych, D. H., Majda, M. (1991) Anal. Chem. 63, 85.CrossRefGoogle Scholar
  64. 64.
    Smith, E. L., Alves, L. A., Andergg, J. W., Porter, M. D., Siperko, L. M. (1992) Langmuir 8, 2707.CrossRefGoogle Scholar
  65. 65.
    Rozenfeld, O., Koltypin,Y., Bamnoker, H., Margel, S., Gedanken, A. (1994) Langmuir 10, 3919.CrossRefGoogle Scholar
  66. 66.
    Liu, Q., Friedlaender, F. (1994) J. Min. Eng. 7(4), 449.CrossRefGoogle Scholar
  67. 67.
    Molday, R. S., Mackenzie, D. (1982) J. Immunol. Meth. 52, 353.CrossRefGoogle Scholar
  68. 68.
    Saito, S. (Ed.). (1988) Fine Ceramics, Elsevier, Amsterdam.Google Scholar
  69. 69.
    Goldman, P. (1988) In: Electronic Ceramics: Properties, Deuices, and Applications, Levinson, L. M., (Ed.), Dekker, New York.Google Scholar
  70. 70.
    Sonti, S. V., Bose, A. (1995) J. Colloid Interface Sci. 170, 575.CrossRefGoogle Scholar
  71. 71.
    Liu, Q., Xu, Z. (1995) Langmuir 11, 4617–4622.CrossRefGoogle Scholar
  72. 72.
    Moulder, J. F., Stickle, W. F., Sobol, P. E., Bomben, K. D. (1992) Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corp., Eden Prairie, MN.Google Scholar
  73. 73.
    Wood, R., Kim, D. S., Basilid, C. I., Yoon, R.-H. (1995) Colloids Surf. 94, 67.CrossRefGoogle Scholar
  74. 74.
    Zhong, C. H., Poter, M. D. (1994) J. Am. Chem. Soc.116, 11616.CrossRefGoogle Scholar
  75. 75.
    Plueddemann, E. P. (1985) In: Silane, Surfaces, and Interface, Leyden, D. E., (Ed.), Gordon and Breach Science Publisher, New York, 1–23.Google Scholar
  76. 76.
    Marquez, M., Grady, B. P., Robb, I. (2005) Colloid Surf. A, 266, 18.CrossRefGoogle Scholar
  77. 77.
    Nalaskowski, J., Drelich, J., Hupka, J., Miller, J. D. (2003) Langmuir 19, 5311.CrossRefGoogle Scholar
  78. 78.
    Ding, W. P., Meitzner, G. D., Iglesia, E. (2002) J. Catal. 206, 14.CrossRefGoogle Scholar
  79. 79.
    Evans, J., Zaki, A. B., El-Sheikh, M. Y., El-Safty, S. A. (2000) J. Phys. Chem. B 104, 10271.CrossRefGoogle Scholar
  80. 80.
    Brunel, D. (1999) Micropor. Mesopor. Mater 27, 329.CrossRefGoogle Scholar
  81. 81.
    Lee, S. Y., Harris, M. T. (2006) J. Colloid Interface Sci. 293, 401.CrossRefGoogle Scholar
  82. 82.
    Chagnon, M. S., Groman, E. V., Josephson, L., Whitehead, R. A. (1987) U.S. Patent 4,695,393.Google Scholar
  83. 83.
    Iler, R. K. (1973) Surf. Colloid Sci. 6, 1–100.Google Scholar
  84. 84.
    Maure, R. E. (1986) J. Vac. Sci. Technol. A 4, 3002.CrossRefGoogle Scholar
  85. 85.
    Niwa, M., Katada, N., Murakami, Y. (1990) J. Phys. Chem. 94, 6441.CrossRefGoogle Scholar
  86. 86.
    Atik, M., Zarzycki, J. (1994) J. Mater. Sci. Lett. 13, 1301.CrossRefGoogle Scholar
  87. 87.
    Adamson, A. W. (1990) Physical Chemistry of Surfaces, 5th Ed., John Wiley, New York, 297.Google Scholar
  88. 88.
    Stokes, R. J., Evans, D. F. (1996) Fundamentals of Interfacial Engineering, John Wiley, New York, 65.Google Scholar
  89. 89.
    Liu, Q., Xu, Z., Finch, J. A., Egerton, R. (1998) Chem. Mater. 10, 3936–3940.CrossRefGoogle Scholar
  90. 90.
    Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., Beck, J. S. (1992). Nature 359, 710.CrossRefGoogle Scholar
  91. 91.
    Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T.-W., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B., Schlenker, J. L. (1992) J. Am. Chem. Soc. 114, 10834.CrossRefGoogle Scholar
  92. 92.
    Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. (1992) U.S. Patent 5,098,684.Google Scholar
  93. 93.
    Yanagisawa, T., Shimizu, T., Kuroda, K., Kato, C. (1990) Bull. Chem. Soc. Jpn. 63, 988.CrossRefGoogle Scholar
  94. 94.
    Inagaki, S., Fukushima, Y., Kuroda, K. J. (1993) Chem. Soc. Chem. Commun. 8, 680.Google Scholar
  95. 95.
    Stein, A., Melde, B. J., Schroden, R. C. (2000) Adv. Mater. 12, 1403.CrossRefGoogle Scholar
  96. 96.
    Berggren, A., Palmqvist, A. E. C., Holmberg, K. (2005) Soft Matter 1, 219.CrossRefGoogle Scholar
  97. 97.
    Hoffmann, F., Cornelius, M., Morell, J., Froba, M. (2006) J. Nanosci. Nanotechnol. 6, 265.Google Scholar
  98. 98.
    Ford, D. M., Simanek, E. E., Shantz, D. F. (2005) Nanotechnology 16, S458.CrossRefGoogle Scholar
  99. 99.
    Hartmann, M. (2005) Chem. Mater. 17, 4577.CrossRefGoogle Scholar
  100. 100.
    Tsang, S. C., Yu, C. H., Gao, X., Tam, K. (2006) J. Phys. Chem. B 110, 16914.CrossRefGoogle Scholar
  101. 101.
    Ariga, K. (2004) J. Nanosci. Nanotechnol. 4, 23.CrossRefGoogle Scholar
  102. 102.
    Shi, J. L.,. Hua, Z. L, Zhang, L. X. (2004) J. Mater. Chem. 14, 795CrossRefGoogle Scholar
  103. 103.
    Stein, A. (2003) Adv. Mate. 15, 763CrossRefGoogle Scholar
  104. 104.
    Sanchez, C., Lebeau, B., Chaput, F., Boilot, J. P. (2003) Adv. Mater. 15, 1969.CrossRefGoogle Scholar
  105. 105.
    Davis, M. E. (2002) Nature 417, 813CrossRefGoogle Scholar
  106. 106.
    de Vos, D. E., Dams, M., Sels, B. E., Jacobs, P. A. (2002) Chem. Rev. 102, 3615CrossRefGoogle Scholar
  107. 107.
    Schüth, F., Schmidt, W. (2002) Adv. Mater. 14, 629.CrossRefGoogle Scholar
  108. 108.
    Cardin, D. J. (2002) Adv. Mater. 14, 553.CrossRefGoogle Scholar
  109. 109.
    Beck, J. S., Vartali, J. C. (1996) Curr. Opin. Solid State Mater. Sci. 1, 76.CrossRefGoogle Scholar
  110. 110.
    Huo, Q., Margolese, D., Ciesla, U., Feng, P. Y., Gier, T. E., Sieger, P., Leao, R., Petroff, P. M., Schuth, F., Stucky, G. D. (1994) Nature 368, 321.CrossRefGoogle Scholar
  111. 111.
    Jones, C. M., Tsuji, K., Davis, M. (1998) Nature 393, 52.CrossRefGoogle Scholar
  112. 112.
    Feng, X., Fryxell, G. E., Wang, L.-Q., Kim, A.Y., Liu, J., Kemner, K. M. (1997) Science 276, 923.CrossRefGoogle Scholar
  113. 113.
    Israelachvili, J. N., Mitchell, D. J., Ninham, B. W. (1976) J. Chem. Soc. Faraday Trans 72, 525.Google Scholar
  114. 114.
    Israelachvili, J. N. (1992) Intermolecular and Surface Forces, (2nd Ed.), Academic Press, London.Google Scholar
  115. 115.
    Huo, Q., Margolese, D. I., Stucky, G. D. (1996) Chem. Mater. 8, 1147.CrossRefGoogle Scholar
  116. 116.
    Øye, G., Sjöblom, J., Stöcker, M. (1999) Micropor. Mesopor. Mater 27, 171.CrossRefGoogle Scholar
  117. 117.
    Kleitz, F., Blanchard, J., Zibrowius, B., Schueth, F., Aagren, P., Linden, M. (2002) Langmuir 18, 4963.CrossRefGoogle Scholar
  118. 118.
    Aagren, P., Linden, M., Rosenholm, J. B., Blanchard, J., Schueth, F., Amenitsch, H. (2000) Langmuir 16, 8809.CrossRefGoogle Scholar
  119. 119.
    Di Renzo, F., Testa, F., Chen, J. D., Cambon, H., Galarneau, A., Plee, D., Fajula, F. (1999) Micropor. Mesopor. Mater 28, 437.CrossRefGoogle Scholar
  120. 120.
    Yang, H., Coombs, N., Sokolov, I., Ozin, G. A. (1996) Nature 381, 589.CrossRefGoogle Scholar
  121. 121.
    Wang, L. Z., Yu, J., Shi, J. L., Yan, D. S. (1999) J. Mater. Sci. Lett. 18, 1171.CrossRefGoogle Scholar
  122. 122.
    Wu, P., Zhu, J., Xu, Z. (2004) Adv. Func. Mater. 14, 345.CrossRefGoogle Scholar
  123. 123.
    Dong, J., Xu, Z. (2006) In: Functional Fillers and Nanoscale Minerals, SME, Inc., Littleton, CO, 241–252.Google Scholar
  124. 124.
    Mercier, L., Pinnavaia, T. J. (1998) Micropor. Mesopor. Mater 20, 101.CrossRefGoogle Scholar
  125. 125.
    Mercier, L., Pinnavaia, T. J. (1998) Environ. Sci. Technol. 32, 2749.CrossRefGoogle Scholar
  126. 126.
    Lim, M. H., Blanford, C.F., Stein, A. (1998) Chem. Mater. 10, 467.CrossRefGoogle Scholar
  127. 127.
    Brown, J., Mercier, L., Pinnavaia, T. J. (1999) Chem. Commun. 1, 69–70.CrossRefGoogle Scholar
  128. 128.
    Brown, J., Richer, R., Mercier, L. (2000) Micropor. Mesopor. Mater 37, 41.CrossRefGoogle Scholar
  129. 129.
    Antochshuk, V., Jaroniec, M. (2002) Chem. Commun. 3, 258.CrossRefGoogle Scholar
  130. 130.
    Leyden, D. E., Luttrell, G. H. (1975) Anal. Chem. 47, 1612.CrossRefGoogle Scholar
  131. 131.
    Arkels, B. (1992) Silane coupling agent chemistry, in silicon compounds, register and review, petrarch system catalogue, 59.Google Scholar
  132. 132.
    Goelzhauser, A., Panov, S., Mast, M., Schertel, A., Grunze, M., Woell, Ch. (1995) Surf. Sci. 334, 235.CrossRefGoogle Scholar
  133. 133.
    Lund, H., Baizer, M. M. (1991) Organic Electrochemistry, Marcel Dekker, Inc. New York, 581.Google Scholar
  134. 134.
    Ihara, H., Okazaki, S., Ohmori, K., Uemura, S., Hirayama, C., Nagaoka, S. (1998) Anal. Sci. 14, 349.CrossRefGoogle Scholar
  135. 135.
    Kanazawa, H., Kashiwase, Y., Yamamoto, K., Matsushima, Y. (1997) Anal. Chem. 69, 823.CrossRefGoogle Scholar
  136. 136.
    Takafuji, M., Dong, W., Goto, Y., Sakurai, T., Nagaoka, S., Ihara, H. (2002) Polym. J. 34, 437.CrossRefGoogle Scholar
  137. 137.
    Takafuji, M., Ide, S., Ihara, H., Xu, Z. (2004) Chem. Mater 16, 1977.CrossRefGoogle Scholar
  138. 138.
    Gold, D. H., Gregor, H. P. (1960) J. Phys. Chem. 64, 1464CrossRefGoogle Scholar
  139. 139.
    Liu, K. J., Gregor, H. P. (1965) J. Phys. Chem. 69, 1252CrossRefGoogle Scholar
  140. 140.
    Tanford, C., Wagner, M. L. (1953) J. Am. Chem. Soc. 75, 434.CrossRefGoogle Scholar
  141. 141.
    Gold, D. H., Gregor, H. P. (1960) J. Phys. Chem. 64, 1461.CrossRefGoogle Scholar
  142. 142.
    Molina, M. J., Gomez-Anton, M. R., Rivas, B. L., Maturana, H. A., Pierola, I. F. (2001) J. Appl. Polym. Sci. 79, 1467CrossRefGoogle Scholar
  143. 143.
    Shiraishi, Y., Nishimura, G., Hirai, T., Komasawa, I. (2002) Ind. Eng. Chem. Res. 41, 5065.CrossRefGoogle Scholar
  144. 144.
    Dong, J., Xu, Z., Wang, F. (2008) Appl. Surf. Sci. 254, 3522.Google Scholar
  145. 145.
    Parida, S. K., Dash, S., Patel, S., Mishra, B. K. (2006) Adv. Colloid Interface Sci. 121, 77.CrossRefGoogle Scholar
  146. 146.
    Inagaki, S., Guan, S., Fukushima, Y., Ohsuna, T., Terasaki, O. (1999) J. Am. Chem. Soc. 121, 9611.CrossRefGoogle Scholar
  147. 147.
    Asefa, T., MacLachlan, M. J., Coombs, N., Ozin, G. A. (1999) Nature 402, 867.Google Scholar
  148. 148.
    Melde, B. J., Holland, B. T., Blanford, C. F., Stein, A. (1999) Chem. Mater 11, 3302.CrossRefGoogle Scholar
  149. 149.
    Vinu, A., Hossain, K. Z., Ariga, K. (2005) J. Nanosci. Nanotechnol. 5/3, 347.CrossRefGoogle Scholar
  150. 150.
    Hoffmann, F., Cornelius, M., Morell, J., Froba, M. (2006) J. Nanosci. Nanotechnol. 6, 265.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Zhenghe Xu
    • 1
  • Jie Dong
  1. 1.Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations