Arbuscular Mycorrhizal Fungi Communities in Major Intensive North American Grain Productions

  • M. S. Beauregard
  • C. Hamel
  • M. St.-Arnaud


With population increase, urban sprawl on some of the best agricultural soils and the interest for biofuels, serious pressures have been created on grain and oilseeds production in North America. Fertilizers are the main expense in intensive agricultural management practices. P fertilization is often closely related with soil degradation and contamination of surface water, causing eutrophication and accumulation of blue-green algae in certain locations of Canada. Arbuscular mycorrhizal (AM) symbioses have been shown to benefit plant growth in large part due to the very extensive hyphal network development in soil, exploiting nutrients more efficiently and improving plant uptake. AM symbiosis also increases resistance to stress and reduces disease incidence, representing a key solution in sustainable agriculture. Appropriate management of mycorrhizae in agriculture should allow a substantial reduction in chemical use and production costs. This chapter will review the effects of various fertilization practices on AMF community structure and crop productivity in major North American grain productions (i.e., corn, soybean, wheat, barley), and their reaction to other common management practices (i.e., tillage, rotation, pesticide use).


Arbuscular mycorrhizal fungi intensive agriculture grain production 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdalla, M.E., and Abdel-Fattah, G.M., 2000, Influence of the endomycorrhizal fungus Glomus mosseae on the development of peanut pod rot disease in Egypt. Mycorrhiza 10: 29-35.Google Scholar
  2. Aliasgarzad, N., Neyshabouri, M.R., and Salimi, G., 2006, Effects of arbuscular mycorrhizal fungi and Bradyrhizobium japonicum on drought stress of soybean. Biologia 61: S324-S328.Google Scholar
  3. Al-Karaki, G., McMichael, B., and Zak, J., 2004, Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14: 263-269.PubMedGoogle Scholar
  4. Al-Karaki, G.N., 1998, Benefit, cost and water-use efficiency of arbuscular mycorrhizal durum wheat grown under drought stress. Mycorrhiza 8: 41-45.Google Scholar
  5. Al-Karaki, G.N., and Al-Omoush, M., 2002, Wheat response to phosphogypsum and mycorrhizal fungi in alkaline soil. J. Plant Nutr. 25: 873-883.Google Scholar
  6. Alloush, G.A., and Clark, R.B., 2001, Maize response to phosphate rock and arbuscular mycorrhizal fungi in acidic soil. Com. Soil Sci. Plant Anal. 32: 231-254.Google Scholar
  7. Andrade, G., Mihara, K.L., Linderman, R.G., and Bethlenfalvay, G.J., 1997, Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi. Plant Soil 192: 71-79.Google Scholar
  8. Antunes, P.M., de Varennes, A., Zhang, T., and Goss, M.J., 2006, The tripartite symbiosis formed by indigenous arbuscular mycorrhizal fungi, Bradyrhizobium japonicum and soya bean under field conditions. J. Agr. Crop Sci. 192: 373-378.Google Scholar
  9. Artursson, V., Finlay, R.D., and Jansson, J.K., 2006, Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ. Microbiol. 8: 1-10.PubMedGoogle Scholar
  10. Augé, R.M., and Stodola, A.J.W., 1990, An apparent increase in symplastic water contributes to greater turgor in mycorrhizal roots of droughted Rosa plants. New Phytol. 115: 285-295.Google Scholar
  11. Azcón, R., Ruiz-Lozano, J., and Rodriguez, R., 2001, Differential contribution of arbuscular mycorrhizal fungi to plant nitrate uptake (N-15) under increasing N supply to the soil. Can. J. Bot. 79: 1175-1180.Google Scholar
  12. Babana, A.H., and Antoun, H., 2006, Effect of Tilemsi phosphate rock-solubilizing micro-organisms on phosphorus uptake and yield of field-grown wheat (Triticum aestivum L.) in Mali. Plant Soil 287: 51-58.Google Scholar
  13. Bagayoko, M., George, E., Romheld, V., and Buerkert, A.B., 2000, Effects of mycorrhizae and phosphorus on growth and nutrient uptake of millet, cowpea and sorghum on a West African soil. J. Agric. Sci. 135: 399-407.Google Scholar
  14. Baon, J.B., Smith, S.E., and Alston, A.M., 1993, Mycorrhizal responses of barley cultivars differing in P-efficiency. Plant Soil 157: 97-105.Google Scholar
  15. Barea, J.M., Azcón-Aguilar, C., and Azcón, R., 1987, Vesicular-arbuscular improve both symbiotic N2 fixation and N uptake from soil as assessed with a N-15 technique under field conditions. New Phytol. 106: 717-726.Google Scholar
  16. Barea, J.M., Azcón, R., and Azcón-Aguilar, C., 2002, Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie van Leeuwenhoek 81: 343-351.PubMedGoogle Scholar
  17. Baudoin, E., Benizri, E., and Guckert, A., 2003, Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol. Biochem. 35: 1183-1192.Google Scholar
  18. Bazzoffi, P., Pellegrini, S., Rocchini, A., Morandi, M., and Grasselli, O., 1998, The effect of urban refuse compost and different tractors tires on soil physical properties, soil erosion and maize yield. Soil Til. Res. 48: 275-286.Google Scholar
  19. Bedini, S., Avio, L., Argese, E., and Giovannetti, M., 2007, Effects of long-term land use on arbuscular mycorrhizal fungi and glomalin-related soil protein. Agric. Ecos. Environ. 120: 463-466.Google Scholar
  20. Bethlenfalvay, G.J., Brown, M.S., Ames, R.N., and Thomas, R.S., 1988, Effects of drought on host and endophyte development in mycorrhizal soybeans in relation to water use and phosphate uptake. Physiol. Plant. 72: 565-571.Google Scholar
  21. Bever, J.D., Morton, J.B., Antonovics, J., and Schultz, P.A., 1996, Host-dependent sporulation and species diversity of arbuscular mycorrhizal fungi in a mown grassland. J. Ecol. 84: 71-82.Google Scholar
  22. Biró, B., Koves-Pechy, K., Voros, I., Takacs, T., Eggenberg, P., and Strasser, R.J., 2000, Inter-relations between Azospirillum and Rhizobium nitrogen-fixers and arbuscular mycorrhizal fungi in the rhizosphere of alfalfa at sterile, AMF-free or normal soil conditions. Appl. Soil Ecol. 15: 159-168.Google Scholar
  23. Blaszkowski, J., 1993, Comparative studies of the occurrence of arbuscular fungi and mycorrhizae (Glomales) in cultivated and uncultivated soils of Poland. Acta Mycol. 28: 93-140.Google Scholar
  24. Boddington, C.L., and Dodd, J.C., 2000, The effect of agricultural practices on the development of indigenous arbuscular mycorrhizal fungi. I. Field studies in an Indonesian ultisol. Plant Soil 218: 137-144.Google Scholar
  25. Bødker, L., Kjøller, R., Kristensen, K., and Rosendahl, S., 2002, Interactions between indigenous arbuscular mycorrhizal fungi and Aphanomyces euteiches in field-grown pea. Mycorrhiza 12: 7-12.PubMedGoogle Scholar
  26. Bolandnazar, S., Aliasgarzad, N., Neishabury, M.R., and Chaparzadeh, N., 2007, Mycorrhizal colonization improves onion (Allium cepa L.) yield and water use efficiency under water deficit condition. Sci. Hort. 114: 11-15.Google Scholar
  27. Borowicz, V.A., 2001, Do arbuscular mycorrhizal fungi alter plant-pathogen relations? Ecology 82: 3057-3068.Google Scholar
  28. Boswell, E.P., Koide, R.T., Shumway, D.L., and Addy, H.D., 1998, Winter wheat cover cropping, VA mycorrhizal fungi and maize growth and yield. Agric. Ecos. Environ. 67: 55-65.Google Scholar
  29. Boyetchko, S.M., and Tewari, J.P., 1988, The effect of VA mycorrhizal fungi on infection by Bipolaris sorokiniana in barley. Can. J. Plant Pathol. 10: 361.Google Scholar
  30. Boyetchko, S.M., and Tewari, J.P., 1990, Effect of phosphorus and VA mycorrhizal fungi on common root rot of barley. Innovation and integration. Proceedings of the 8th North American Conference on Mycorrhizae, Sept. 5-8, Jackson, Wyoming.Google Scholar
  31. Brady, N.C., and Weil, R.R., 2002. The nature and properties of soils, Prentice Hall, New Jersey, pp. 960.Google Scholar
  32. Budi, S.W., van Tuinen, D., Martinotti, G., and Gianinazzi, S., 1999, Isolation from the Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorrhiza development and antagonistic towards soilborne fungal pathogens. Appl. Environ. Microbiol. 65: 5148-5150.PubMedGoogle Scholar
  33. Calvet, C., Barea, J.M., and Pera, J., 1992, In vitro interactions between the vesicular-arbuscular mycorrhizal fungus Glomus mosseae and some saprophytic fungi isolated from organic substrates. Soil Biol. Biochem. 24: 775-780.Google Scholar
  34. Carter, M.R., and Campbell, A.J., 2006, Influence of tillage and liquid swine manure on productivity of a soybean-barley rotation and some properties of a fine sandy loam in Prince Edward Island. Can. J. Soil Sci. 86: 741-748.Google Scholar
  35. Castillo, C.G., Rubio, R., Rouanet, J.L., and Borie, F., 2006, Early effects of tillage and crop rotation on arbuscular mycorrhizal fungal propagules in an ultisol. Biol. Fert. Soils 43: 83-92.Google Scholar
  36. Christensen, H., and Jakobsen, I., 1993, Reduction of bacterial growth by a vesicular-arbuscular mycorrhizal fungus in the rhizosphere of cucumber (Cucumis sativus L). Biol. Fert. Soils 15: 253-258.Google Scholar
  37. Clark, R.B., 1997, Arbuscular mycorrhizal adaptation, spore germination, root colonization, and host plant growth and mineral acquisition at low pH. Plant Soil 192: 15-22.Google Scholar
  38. Clark, R.B., and Zeto, S.K., 2000, Mineral acquisition by arbuscular mycorrhizal plants. J. Plant Nutr. 23: 867-902.Google Scholar
  39. Cousins, J.R., Hope, D., Gries, C., and Stutz, J.C., 2003, Preliminary assessment of arbuscular mycorrhizal fungal diversity and community structure in an urban ecosystem. Mycorrhiza 13: 319-326.PubMedGoogle Scholar
  40. Cruz, C., Green, J.J., Watson, C.A., Wilson, F., and Martins-Loucao, M.A., 2004, Functional aspects of root architecture and mycorrhizal inoculation with respect to nutrient uptake capacity. Mycorrhiza 14: 177-184.PubMedGoogle Scholar
  41. Da Silva, A.E., and Gabelman, W.H., 1992, Screening maize inbred lines for tolerance to low-P stress condition. Plant Soil 146: 181-187.Google Scholar
  42. de Boer, W., Folman, L.B., Summerbell, R.C., and Boddy, L., 2005, Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol. Rev. 29: 795-811.Google Scholar
  43. de Varennes, A., and Goss, M.J., 2007, The tripartite symbiosis between legumes, rhizobia and indigenous mycorrhizal fungi is more efficient in undisturbed soil. Soil Biol. Biochem. 39: 2603-2607.Google Scholar
  44. Douds, D.D., and Millner, P., 1999, Biodiversity of arbuscular mycorrhizal fungi in agroeco-systems. Agric. Ecos. Environ. 74: 77-93.Google Scholar
  45. Ellis, J.R., Roder, W., and Mason, S.C., 1992, Grain sorghum-soybean rotation and fertilization influence on vesicular-arbuscular mycorrhizal fungi. Soil Sci. Soc. Amer. J. 56: 789-794.Google Scholar
  46. Elsen, A., Declerck, S., and De Waele, D., 2001, Effects of Glomus intraradices on the reproduction of the burrowing nematode (Radopholus similis) in dixenic culture. Mycorrhiza 11: 49-51.Google Scholar
  47. Feldmann, F., and Boyle, C., 1998, Weed-mediated stability of arbuscular mycorrhizal fungi effectiveness in maize monocultures. J. Appl. Bot. 73: 1-5.Google Scholar
  48. Feng, G., Zhang, F.S., Li, X.L., Tian, C.Y., Tang, C.X., and Rengel, Z., 2002, Uptake of nitrogen from indigenous soil pool by cotton plant inoculated with arbuscular mycorrhizal fungi. Com. Soil Sci. Plant Anal. 33: 3825-3836.Google Scholar
  49. Feng, G., Song, Y.C., Li, X.L., and Christie, P., 2003, Contribution of arbuscular mycorrhizal fungi to utilization of organic sources of phosphorus by red clover in a calcareous soil. Appl. Soil Ecol. 22: 139-148.Google Scholar
  50. Fidelibus, M.W., Martin, C.A., and Stutz, J.C., 2001, Geographic isolates of Glomus increase root growth and whole-plant transpiration of citrus seedlings grown with high phosphorus. Mycorrhiza 10: 231-236.Google Scholar
  51. Filion, M., St-Arnaud, M., and Fortin, J.A., 1999, Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytol. 141: 525-533.Google Scholar
  52. Fontenla, S., Garcia-Romera, I., and Ocampo, J.A., 1999, Negative influence of non-host plants on the colonization of Pisum sativum by the arbuscular mycorrhizal fungus Glomus mosseae. Soil Biol. Biochem. 31: 1591-1597.Google Scholar
  53. Francis, R., and Read, D.J., 1994, The contributions of mycorrhizal fungi to the determination of plant community structure. Plant Soil 159: 11-25.Google Scholar
  54. Galvez, L., Douds, D.D., Drinkwater, L.E., and Wagoner, P., 2001, Effect of tillage and farming system upon VAM fungus populations and mycorrhizas and nutrient uptake of maize. Plant Soil 228: 299-308.Google Scholar
  55. Garmendia, I., Goicoechea, N., and Aguirreolea, J., 2004, Effectiveness of three Glomus species in protecting pepper (Capsicum annuum L.) against Verticillium wilt. Biol. Contr. 31: 296-305.Google Scholar
  56. Gavito, M.E., and Miller, M.H., 1998, Early phosphorus nutrition, mycorrhizae development, dry matter partitioning and yield of maize. Plant Soil 199: 177-186.Google Scholar
  57. Ghazvini, H., and Tekauz, A., 2007, Reactions of Iranian barley accessions to three predominant pathogens in Manitoba. Can. J. Plant Pathol. 29: 69-78.Google Scholar
  58. Gosling, P., Hodge, A., Goodlass, G., and Bending, G.D., 2006, Arbuscular mycorrhizal fungi and organic farming. Agric. Ecos. Environ. 113: 17-35.Google Scholar
  59. Goss, M.J., and de Varennes, A., 2002, Soil disturbance reduces the efficacy of mycorrhizal associations for early soybean growth and N2 fixation. Soil Biol. Biochem. 34: 1167-1173.Google Scholar
  60. Graham, J.H., 2001, What do root pathogens see in mycorrhizas? New Phytol. 149: 357-359.Google Scholar
  61. Graham, J.H., and Abbott, L.K., 2000, Wheat responses to aggressive and non-aggressive arbuscular mycorrhizal fungi. Plant Soil 220: 207-218.Google Scholar
  62. Graham, J.H., and Menge, J.A., 1982, Influence of vesicular-arbuscular mycorrhizae and soil phosphorus on take-all disease of wheat. Phytopathology 72: 95-98.Google Scholar
  63. Gryndler, M., Vosatka, M., Hrselova, H., Catska, V., Chvatalova, I., and Jansa, J., 2002, Effect of dual inoculation with arbuscular mycorrhizal fungi and bacteria on growth and mineral nutrition of strawberry. J. Plant Nutr. 25: 1341-1358.Google Scholar
  64. Hamel, C., 2004, Impact of arbuscular mycorrhizal fungi on N and P cycling in the root zone. Can. J. Soil Sci. 84: 383-395.Google Scholar
  65. Hamel, C., Furlan, V., and Smith, D.L., 1992, Mycorrhizal effects on interspecific plant competition and nitrogen transfer in legume grass mixtures. Crop Sci. 32: 991-996.Google Scholar
  66. Hamel, C., Dalpé, Y., Lapierre, C., Simard, R.R., and Smith, D.L., 1994, Composition of the vesicular-arbuscular mycorrhizal fungi population in an old meadow as affected by pH, phosphorus and soil disturbance. Agric. Ecos. Environ. 49: 223-231.Google Scholar
  67. Hamel, C., Hanson, K., Selles, F., Cruz, A.F., Lemke, R., McConkey, B., and Zentner, R., 2006a, Seasonal and long-term resource-related variations in soil microbial communities in wheat-based rotations of the Canadian prairie. Soil Biol. Biochem. 38: 2104-2116.Google Scholar
  68. Hamel, C., Vujanovic, V., Jeannotte, R., Liu, A., Nakano, A., and St-Arnaud, M., 2006b, Variation in arbuscular mycorrhizal fungi extraradicular biomass along a climatic gradient in an agricultural zone of Quebec, Canada. 5th International Symbosium on Society Congress, Aug. 4-10, Vienna, Austria.Google Scholar
  69. Hao, Z.P., Christie, P., Qin, L., Wang, C.X., and Li, X.L., 2005, Control of fusarium wilt of cucumber seedlings by inoculation with an arbuscular mycorrhizal fungus. J. Plant Nutr. 28: 1961-1974.Google Scholar
  70. Hart, M.M., Reader, R.J., and Klironomos, J.N., 2003, Plant coexistence mediated by arbuscular mycorrhizal fungi. Tren. Ecol. Evol. 18: 418-423.Google Scholar
  71. Heffer, P., and Prud’homme, M. (2006). Medium-term outlook for global Fertililizer demand, supply and trade, 2006-2010, summary report presented at the 74th IFA Annual Conference Cape Town, Paris, France, International Fertilizer Industry Association.Google Scholar
  72. Helgason, T., Daniell, T.J., Husband, R., Fitter, A.H., and Young, J.P.W., 1998, Ploughing up the wood-wide web. Nature 394: 431.PubMedGoogle Scholar
  73. Hodge, A., Campbell, C.D., and Fitter, A.H., 2001, An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413: 297-299.PubMedGoogle Scholar
  74. Ibijbijen, J., Urquiaga, S., Ismaili, M., Alves, B.J.R., and Boddey, R.M., 1996, Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition and nitrogen fixation of three varieties of common beans (Phaseolus vulgaris). New Phytol. 134: 353-360.Google Scholar
  75. Ilbas, A.I., and Sahin, S., 2005, Glomus fasciculatum inoculation improves soybean production. Acta Agri. Scand. S. B-Soil Plant Sci. 55: 287-292.Google Scholar
  76. Imboden, D.M., 1974, Phosphorus model of lake eutrophication. Limnol. Oceanogr. 19: 297-304.Google Scholar
  77. Jansa, J., Mozafar, A., Anken, T., Ruh, R., Sanders, I.R., and Frossard, E., 2002, Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12: 225-234.PubMedGoogle Scholar
  78. Johnson, N.C., 1993, Can fertilization of soil select less mutualistic mycorrhizae? Ecol. Appl. 3: 749-757.Google Scholar
  79. Johnson, N.C., 1998, Responses of Salsola kali and Panicum virgatum to mycorrhizal fungi, phosphorus and soil organic matter-implications for reclamation. J. Appl. Ecol. 35: 86-94.Google Scholar
  80. Johnson, N.C., and Pfleger, F.L., 1992. Vesicular-arbuscular mycorrhizae and cultural practices. In: Mycorrhizae in sustainable agriculture., G. J. Bethlenfalvay and R. G. Linderman eds., ASA, CSSA, and SSSA, Madison, WI, 54, pp. 71-99.Google Scholar
  81. Johnson, N.C., Tilman, D., and Wedin, D., 1992, Plant and soil controls on mycorrhizal fungal communities. Ecology 73: 2034-2042.Google Scholar
  82. Jordan, N.R., Zhang, J., and Huerd, S., 2000, Arbuscular-mycorrhizal fungi: potential roles in weed management. Weed Res. 40: 397-410.Google Scholar
  83. Kabir, Z., and Koide, R.T., 2000, The effect of dandelion or a cover crop on mycorrhiza ino-culum potential, soil aggregation and yield of maize. Agric. Ecos. Environ. 78: 167-174.Google Scholar
  84. Kabir, Z., O’Halloran, I.P., and Hamel, C., 1999, Combined effects of soil disturbance and fallowing on plant and fungal components of mycorrhizal corn (Zea mays L.). Soil Biol. Biochem. 31: 307-314.Google Scholar
  85. Kanno, T., Saito, M., Ando, Y., Macedo, M.C.M., Nakamura, T., and Miranda, C.H.B., 2006, Importance of indigenous arbuscular mycorrhiza for growth and phosphorus uptake in tropical forage grasses growing on an acid, infertile soil from the brazilian savannas. Trop. Grassl. 40: 94-101.Google Scholar
  86. Karagiannidis, N., and Hadjisavvazinoviadi, S., 1998, The mycorrhizal fungus Glomus mosseae enhances growth, yield and chemical composition of a durum wheat variety in 10 different soils. Nutr. Cycl. Agroecos. 52: 1-7.Google Scholar
  87. Karasawa, T., Kasahara, Y., and Takebe, A., 2002, Differences in growth responses of maize to preceding cropping caused by fluctuation in the population of indigenous arbuscular mycorrhizal fungi. Soil Biol. Biochem. 34: 851-857.Google Scholar
  88. Khalil, S., Loynachan, T.E., and Tabatabai, M.A., 1994, Mycorrhizal dependency and nutrient uptake by improved and unimproved corn and soybean cultivars. Agron. J. 86: 949-958.Google Scholar
  89. Khan, I.A., Ahmad, S., and Ayub, N., 2003, Response of oat (Avena sativa) to inoculation with vesicular arbuscular mycorrhizae (VAM) in the presence of phosphorus. Asian J. Plant Sci. 2: 371-373.Google Scholar
  90. Kirchmann, H., and Thorvaldsson, G., 2000, Challenging targets for future agriculture. Eur. J. Agro. 12: 145-161.Google Scholar
  91. Klironomos, J.N., McCune, J., Hart, M., and Neville, J., 2000, The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecol. Lett. 3: 137-141.Google Scholar
  92. Lekberg, Y., and Koide, R.T., 2005, Is plant performance limited by abundance of arbuscular mycorrhizal fungi? A meta-analysis of studies published between 1988 and 2003. New Phytol. 168: 189-204.PubMedGoogle Scholar
  93. Li, B., Ravnskov, S., Xie, G.L., and Larsen, J., 2007, Biocontrol of Pythium damping-off in cucumber by arbuscular mycorrhiza-associated bacteria from the genus Paenibacillus. Biocontr. 52: 863-875.Google Scholar
  94. Li, H.Y., Smith, S.E., Holloway, R.E., Zhu, Y.G., and Smith, F.A., 2006, Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. New Phytol. 172: 536-543.PubMedGoogle Scholar
  95. Liebman, M., Menalled, F.D., Buhler, D.D., Richard, T.L., Sundberg, D.N., Cambardella, C. A., and Kohler, K.A., 2004, Impacts of composted swine manure on weed and corn nutrient uptake, growth, and seed production. Weed Sci. 52: 365-375.Google Scholar
  96. Linderman, R.G., 1992, Vesicular-arbuscular mycorrhizae and soil microbial interactions. In: Mycorrhizae in sustainable agriculture, G. J. Bethlenfalvay and R. G. Linderman eds., American Society of Agriculture, Madison, WI, Special Publication No. 54, pp. 45-70.Google Scholar
  97. Linderman, R.G., and Paulitz, T.C., 1990, Mycorrhizal-rhizobacterial interactions. In: Biological control of soil-born plant pathogens, D. Hornby, R. J. Cook, Y. Heniset al eds., CAB International, Wallingford, UK, pp. 261-283.Google Scholar
  98. Lioussanne, L., 2007, Rôles des modifications de la microflore bactérienne et de l’exsudation racinaire de la tomate par la symbiose mycorhizienne dans le biocontrôle sur le Phytophthora nicotianae. Ph.D. thesis, Université de Montréal, pp. 264.Google Scholar
  99. Lithourgidis, A.S., Matsi, T., Barbayiannis, N., and Dordas, C.A., 2007, Effect of liquid cattle manure on corn yield, composition, and soil properties. Agron. J. 99: 1041-1047.Google Scholar
  100. Liu, A., Hamel, C., Elmi, A., Costa, C., Ma, B., and Smith, D.L., 2002, Concentrations of K, Ca and Mg in maize colonized by arbuscular mycorrhizal fungi under field conditions. Can. J. Soil Sci. 82: 271-278.Google Scholar
  101. Mader, P., Fliessbach, A., Dubois, D., Gunst, L., Fried, P., and Niggli, U., 2002, Soil fertility and biodiversity in organic farming. Science 296: 1694-1697.PubMedGoogle Scholar
  102. Marler, M.J., Zabinski, C.A., and Callaway, R.M., 1999, Mycorrhizae indirectly enhance competitive effects of an invasive forb on a native bunchgrass. Ecology 80: 1180-1186.Google Scholar
  103. Marschner, P., and Crowley, D.E., 1996a, Physiological activity of a bioluminescent Pseudomonas fluorescens (strain 2-79) in the rhizosphere of mycorrhizal and non-mycorrhizal pepper (Capsicum annuum L). Soil Biol. Biochem. 28: 869-876.Google Scholar
  104. Marschner, P., and Crowley, D.E., 1996b, Root colonization of mycorrhizal and non- mycorrhizal pepper (Capsicum annuum) by Pseudomonas fluorescens 2-79RL. New Phytol. 134: 115-122.Google Scholar
  105. Marschner, P., Crowley, D.E., and Higashi, R.M., 1997, Root exudation and physiological status of a root-colonizing fluorescent pseudomonad in mycorrhizal and non-mycorrhizal pepper (Capsicum annuum L). Plant Soil 189: 11-20.Google Scholar
  106. Matsubara, Y., Ohba, N., and Fukui, H., 2001, Effect of arbuscular mycorrhizal fungus infection on the incidence of fusarium root rot in asparagus seedlings. J. Jap. Soc. Hort. Sci. 70: 202-206.Google Scholar
  107. McGonigle, T.P., 1988, A numerical analysis of published field trials with vesicular-arbuscular mycorrhizal fungi. Func. Ecol. 2: 473-478.Google Scholar
  108. Menendez, A.B., Scervino, J.M., and Godeas, A.M., 2001, Arbuscular mycorrhizal populations associated with natural and cultivated vegetation on a site of Buenos Aires province, Argentina. Biol. Fert. Soils 33: 373-381.Google Scholar
  109. Meyer, J.R., and Linderman, R.G., 1986a, Response of subterranean clover to dual inoculation with vesicular-arbuscular mycorrhizal fungi and a plant growth-promoting bacterium, Pseudomonas putida. Soil Biol. Biochem. 18: 185-190.Google Scholar
  110. Meyer, J.R., and Linderman, R.G., 1986b, Selective influence on populations of rhizosphere or rhizoplane bacteria and actinomycetes by mycorrhizas formed by Glomus fasciculatum. Soil Biol. Biochem. 18: 191-196.Google Scholar
  111. Miller, M.H., 2000, Arbuscular mycorrhizae and the phosphorus nutrition of maize: a review of Guelph studies. Can. J. Plant Sci. 80: 47-52.Google Scholar
  112. Miller, M.H., McGonigle, T.P., and Addy, H.D., 1995, Functional ecology of vesicular arbuscular mycorrhizas as influenced by phosphate fertilization and tillage in an agricultural ecosystem. Crit. Rev. Biotechnol. 15: 241-255.Google Scholar
  113. Miransari, M., Bahrami, H.A., Rejali, F., Malakouti, M.J., and Torabi, H., 2007, Using arbus-cular mycorrhiza to reduce the stressful effects of soil compaction on corn (Zea mays L.) growth. Soil Biol. Biochem. 39: 2014-2026.Google Scholar
  114. Mohammad, A., Mitra, B., and Khan, A.G., 2004, Effects of sheared-root inoculum of Glomus intraradices on wheat grown at different phosphorus levels in the field. Agric. Ecos. Environ. 103: 245-249.Google Scholar
  115. Mozafar, A., Anken, T., Ruh, R., and Frossard, E., 2000, Tillage intensity, mycorrhizal and nonmycorrhizal fungi, and nutrient concentrations in maize, wheat, and canola. Agron. J. 92: 1117-1124.Google Scholar
  116. Nourinia, A.A., Faghani, E., Rejali, F., Safarnezhad, A., and Abbasi, M., 2007, Evaluation effects of symbiosis of mycorrhiza on yield components and some physiological parameters of barley genotypes under salinity stress. Asian J. Plant Sci. 6: 1108-1112.Google Scholar
  117. Oehl, F., Sieverding, E., Ineichen, K., Mader, P., Boller, T., and Wiemken, A., 2003, Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Appl. Environ. Microbiol. 69: 2816-2824.PubMedGoogle Scholar
  118. Oehl, F., Sieverding, E., Mader, P., Dubois, D., Ineichen, K., Boller, T., and Wiemken, A., 2004, Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecol. 138: 574-583.Google Scholar
  119. Oehl, F., Sieverding, E., Ineichen, K., Ris, E.A., Boller, T., and Wiemken, A., 2005, Com-munity structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytol. 165: 273-283.PubMedGoogle Scholar
  120. Omar, S.A., 1998, The role of rock-phosphate-solubilizing fungi and vesicular-arbusular-mycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate. World J. Microbiol. Biotechnol. 14: 211-218.Google Scholar
  121. Ortas, I., Ortakci, D., and Kaya, Z., 2002, Various mycorrhizal fungi propagated on different hosts have different effect on citrus growth and nutrient uptake. Com. Soil Sci. Plant Anal. 33: 259-272.Google Scholar
  122. Ozgonen, H., and Erkilic, A., 2007, Growth enhancement and Phytophthora blight (Phyto-phthora capsici Leonian) control by arbuscular mycorrhizal fungal inoculation in pepper. Crop Protec. 26: 1682-1688.Google Scholar
  123. Pardo, A., Amato, M., and Chiaranda, F.Q., 2000, Relationships between soil structure, root distribution and water uptake of chickpea (Cicer arietinum L.). Plant growth and water distribution. Eur. J. Agro. 13: 39-45.Google Scholar
  124. Paulitz, T.C., and Linderman, R.G., 1989, Interactions between fluorescent pseudomonads and VA mycorrhizal fungi. New Phytol. 113: 37-45.Google Scholar
  125. Plenchette, C., 1983, Growth responses of several plant species to mycorrhizae in a soil of moderate P fertility. Plant Soil 70: 199-209.Google Scholar
  126. Posta, K., Marschner, H., and Römheld, V., 1994, Manganese reduction in the rhizosphere of mycorrhizal and nonmycorrhizal maize. Mycorrhiza 5: 119-124.Google Scholar
  127. Powell, C.L., 1981, Inoculation of barley with efficient mycorrhizal fungi stimulates seed yield. Plant Soil 59: 487-489.Google Scholar
  128. Powell, J.R., Gulden, R.H., Hart, M.M., Campbell, R.G., Levy-Booth, D.J., Dunfield, K.E., Pauls, K.P., Swanton, C.J., Trevors, J.T., and Klironomos, J.N., 2007, Mycorrhizal and rhizobial colonization of genetically modified and conventional soybeans. Appl. Environ. Microbiol. 73: 4365-4367.PubMedGoogle Scholar
  129. Quilambo, O.A., Weissenhorn, I., Doddema, H., Kuiper, P.J.C., and Stulen, I., 2005, Arbus-cular mycorrhizal inoculation of peanut in low-fertile tropical soil. II. Alleviation of drought stress. J. Plant Nutr. 28: 1645-1662.Google Scholar
  130. Rao, A.V., Tarafdar, J.C., Sharma, S.K., and Aggarwal, R.H., 1995, Influence of cropping systems on soil biochemical properties in an arid rainfed environment. J. Arid Environ 31: 237-244.Google Scholar
  131. Read, D.J., Koucheki, H.K., and Hodgson, J., 1976, Vesicular-arbuscular mycorrhiza in natural vegetation systems. New Phytol. 77: 641-653.Google Scholar
  132. Rempel, C.B., 1989, Interactions between vesicular-arbuscular mycorrhizae (VAM) and fungal pathogens in wheat. M.Sc. thesis, University of Manitoba, Winnipeg, Canada, pp. 134.Google Scholar
  133. Reyes, I., Bernier, L., and Antoun, H., 2002, Rock phosphate solubilization and colonization of maize rhizosphere by wild and genetically modified strains of Penicillium rugulosum. Microb. Ecol. 44: 39-48.PubMedGoogle Scholar
  134. Rillig, M.C., Lutgen, E.R., Ramsey, P.W., Klironomos, J.N., and Gannon, J.E., 2005, Microbiota accompanying different arbuscular mycorrhizal fungal isolates influence soil aggregation. Pedobiol. 49: 251-259.Google Scholar
  135. Rodriguez, H., and Fraga, R., 1999, Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17: 319-339.PubMedGoogle Scholar
  136. Rousseau, A., Benhamou, N., Chet, I., and Piché, Y., 1996, Mycoparasitism of the extramatrical phase of Glomus intraradices by Trichoderma harzianum. Phytopathology 86: 434-443.Google Scholar
  137. Ruiz-Lozano, J.M., and Azcón, R., 2000, Symbiotic efficiency and infectivity of an auto-chthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza 10: 137-143.Google Scholar
  138. Ruiz-Lozano, J.M., Azcón, R., and Gomez, M., 1995, Effects of arbuscular-mycorrhizal Glomus species on drought tolerance: physiological and nutritional plant responses. Appl. Environ. Microbiol. 61: 456-460.PubMedGoogle Scholar
  139. Russo, A., Felici, C., Toffanin, A., Gotz, M., Collados, C., Barea, J.M., Moenne-Loccoz, Y., Smalla, K., Vanderleyden, J., and Nuti, M., 2005, Effect of Azospirillum inoculants on arbuscular mycorrhiza establishment in wheat and maize plants. Biol. Fert. Soils 41: 301-309.Google Scholar
  140. Ryan, M.H., and Angus, J.F., 2003, Arbuscular mycorrhizae in wheat and field pea crops on a low P soil: increased Zn-uptake but no increase in P-uptake or yield. Plant Soil 250: 225-239.Google Scholar
  141. Ryan, M.H., and Graham, J.H., 2002, Is there a role for arbuscular mycorrhizal fungi in production agriculture? Plant Soil 244: 263-271.Google Scholar
  142. Ryan, M.H., van Herwaarden, A.F., Angus, J.F., and Kirkegaard, J.A., 2005, Reduced growth of autumn-sown wheat in a low-P soil is associated with high colonisation by arbuscular mycorrhizal fungi. Plant Soil 270: 275-286.Google Scholar
  143. Sala, V.M.R., Freitas, S.D., and da Silveira, A.P.D., 2007, Interaction between arbuscular mycorrhizal fungi and diazotrophic bacterial in wheat plants. Pesq. Agro. Bras. 42: 1593-1600.Google Scholar
  144. Saxena, A.K., Rathi, S.K., and Tilak, K., 1997, Differential effect of various endomycorrhizal fungi on nodulating ability of green gram by Bradyrhizobium sp. (vigna) strains 24. Biol. Fert. Soils 24: 175-178.Google Scholar
  145. Scheublin, T.R., Van Logtestijn, R.S.P., and Van der Heijden, M.G.A., 2007, Presence and identity of arbuscular mycorrhizal fungi influence competitive interactions between plant species. J. Ecol. 95: 631-638.Google Scholar
  146. Schloter, M., Dilly, O., and Munch, J.C., 2003, Indicators for evaluating soil quality. Agric. Ecos. Environ. 98: 255-262.Google Scholar
  147. Schmidt, J.P., Lamb, J.A., Schmitt, M.A., Randall, G.W., Orf, J.H., and Gollany, H.T., 2001, Soybean varietal response to liquid swine manure application. Agron. J. 93: 358-363.Google Scholar
  148. Schreiner, R.P., 2007, Effects of native and nonnative arbuscular mycorrhizal fungi on growth and nutrient uptake of ‘Pinot noir’ (Vitis vinifera L.) in two soils with contrasting levels of phosphorus. Appl. Soil Ecol. 36: 205-215.Google Scholar
  149. Schwab, S.M., Menge, J.A., and Tinker, P.B., 1991, Regulation of nutrient transfer between host and fungus in vesicular-arbusculare mycorrhizas. New Phytol. 117: 387-398.Google Scholar
  150. Scullion, J., Eason, W.R., and Scott, E.P., 1998, The effectivity of arbuscular mycorrhizal fungi from high input conventional and organic grassland and grass-arable rotations. Plant Soil 204: 243-254.Google Scholar
  151. Selim, S., Negrel, J., Govaerts, C., Gianinazzi, S., and van Tuinen, D., 2005, Isolation and partial characterization of antagonistic peptides produced by Paenibacillus sp. strain B2 isolated from the sorghum mycorrhizosphere. Appl. Environ. Microbiol. 71: 6501-6507.PubMedGoogle Scholar
  152. Singer, J.W., Kohler, K.A., Liebman, M., Richard, T.L., Cambardella, C.A., and Buhler, D. D., 2004, Tillage and compost affect yield of corn, soybean, and wheat and soil fertility. Agron. J. 96: 531-537.Google Scholar
  153. Sjöberg, J., 2005, Arbuscular mycorrhizal fungi: occurrence in Sweden and interaction with a plant pathogenic fungus in barley. Ph.D. thesis, Swedish University of Agricultural Sciences, pp. 53.Google Scholar
  154. Smith, S.E., and Read, D.J., 1997. Mycorrhizal symbiosis, 2nd edn., Academic, San Diego, CA/London, pp. 605.Google Scholar
  155. Smith, S.E., Smith, F.A., and Jakobsen, I., 2004, Functional diversity in arbuscular mycor-rhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol. 162: 511-524.Google Scholar
  156. Sood, S.G., 2003, Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants. FEMS Microbiol. Ecol. 45: 219-227.Google Scholar
  157. St-Arnaud, M., and Elsen, A., 2005. Interaction or arbuscular-mycorrhizal fungi with soil-borne pathogens and non-pathogenic rhizosphere micro-organisms. In: In vitro culture of mycorrhizas, S. Declerck, D.-G. Strullu and J. A. Fortin eds., Springer, Berlin/Heidelberg, Germany, pp. 217-231.Google Scholar
  158. St-Arnaud, M., and Vujanovic, V., 2007, Effects of the arbuscular mycorrhizal symbiosis on plant diseases and pests. In: in crop production, C. Hamel and C. Plenchette eds., Haworth, New York, pp. 67-122.Google Scholar
  159. St-Arnaud, M., Hamel, C., Vimard, B., Caron, M., and Fortin, J.A., 1995, Altered growth of Fusarium oxysporum f. sp. chrysanthemi in an in vitro dual culture system with the vesicular arbuscular mycorrhizal fungus Glomus intraradices growing on Daucus carota transformed roots. Mycorrhiza 5: 431-438.Google Scholar
  160. Subba Rao, N.S., 1985, Effect of combined inoculation of Azospirillum brasilense and vesicular arbuscular mycorrhiza on pearl millet (Pennisetum americanum). Plant Soil 81: 283-286.Google Scholar
  161. Subramanian, K.S., and Charest, C., 1995, Influence of arbuscular mycorrhizae on the metabolism of maize under drought stress. Mycorrhiza 5: 273-278.Google Scholar
  162. Subramanian, K.S., and Charest, C., 1998, Arbuscular mycorrhizae and nitrogen assimilation in maize after drought and recovery. Physiol. Plant. 102: 285-296.Google Scholar
  163. Subramanian, K.S., and Charest, C., 1999, Acquisition of N by external hyphae of an arbuscular mycorrhizal fungus and its impact on physiological responses in maize under drought-stressed and well-watered conditions. Mycorrhiza 9: 69-75.Google Scholar
  164. Subramanian, K.S., Charest, C., Dwyer, L.M., and Hamilton, R.I., 1995, Arbuscular mycorrhizas and water relations in maize under drought stress at tasselling. New Phytol. 129: 643-650.Google Scholar
  165. Subramanian, K.S., Charest, C., Dwyer, L.M., and Hamilton, R.I., 1997, Effects of arbuscular mycorrhizae on leaf water potential, sugar content, and P content during drought and recovery of maize. Can. J. Bot. 75: 1582-1591.Google Scholar
  166. Talavera, M., Itou, K., and Mizukubo, T., 2001, Reduction of nematode damage by root colonization with arbuscular mycorrhiza (Glomus spp.) in tomato-Meloidogyne incognita (Tylenchida: Meloidognidae) and carrot-Pratylenchus penetrans (Tylenchida: Praty-lenchidae) pathosystems. Appl. Entomol. Zool. 36: 387-392.Google Scholar
  167. Talukdar, N.C., and Germida, J.J., 1993, Occurrence and isolation of vesicular-arbuscular mycorrhizae in cropped field soils of Saskatchewan, Canada. Can. J. Microbiol. 39: 567-575.Google Scholar
  168. Tarkalson, D.D., Jolley, V.D., Robbins, C.W., and Terry, R.E., 1998, Mycorrhizal coloni-zation and nutrition of wheat and sweet corn grown in manure-treated and untreated topsoil and subsoil. J. Plant Nutr. 21: 1985-1999.Google Scholar
  169. Tejada, M., and Gonzalez, J.L., 2006, Crushed cotton gin compost on soil biological pro-perties and rice yield. Eur. J. Agro. 25: 22-29.Google Scholar
  170. Thygesen, K., Larsen, J., and Bodker, L., 2004, Arbuscular mycorrhizal fungi reduce develop-ment of pea root-rot caused by Aphanomyces euteiches using oospores as pathogen ino-culum. Eur. J. Plant Pathol. 110: 411-419.Google Scholar
  171. Tian, C.Y., Feng, G., Li, X.L., and Zhang, F.S., 2004, Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline soil on salinity tolerance of plants. Appl. Soil Ecol. 26: 143-148.Google Scholar
  172. Troeh, Z.I., and Loynachan, T.E., 2003, Endomycorrhizal fungal survival in continuous corn, soybean, and fallow. Agron. J. 95: 224-230.Google Scholar
  173. van der Heijden, M.G.A., Wiemken, A., and Sanders, I.R., 2003, Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plant. New Phytol. 157: 569-578.Google Scholar
  174. Vazquez, M.M., Cesar, S., Azcón, R., and Barea, J.M., 2000, Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl. Soil Ecol. 15: 261-272.Google Scholar
  175. Vigo, C., Norman, J.R., and Hooker, J.E., 2000, Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Pathol. 49: 509-514.Google Scholar
  176. Villegas, J., and Fortin, J.A., 2001, Phosphorus solubilization and pH changes as a result of the interactions between soil bacteria and arbuscular mycorrhizal fungi on a medium containing NH4+ as nitrogen source. Can. J. Bot. 79: 865-870.Google Scholar
  177. Villegas, J., and Fortin, J.A., 2002, Phosphorus solubilization and pH changes as a result of the interactions between soil bacteria and arbuscular mycorrhizal fungi on a medium containing NO3 -as nitrogen source. Can. J. Bot. 80: 571-576.Google Scholar
  178. Vogelsang, K.M., Reynolds, H.L., and Bever, J.D., 2006, Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytol. 172: 554-562.PubMedGoogle Scholar
  179. Walley, F.L., and Germida, J.J., 1997, Response of spring wheat (Triticum aestivum) to inter-actions between pseudomonas species and Glomus clarum NT4. Biol. Fert. Soils 24: 365-371.Google Scholar
  180. West, H.M., 1996, Influence of arbuscular mycorrhizal infection on competition between Holcus lanatus and Dactylis glomerata. J. Ecol. 84: 429-438.Google Scholar
  181. Whitelaw, M.A., 2000, Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv. Agro. 69: 99-151.Google Scholar
  182. Wu, S.C., Cao, Z.H., Li, Z.G., Cheung, K.C., and Wong, M.H., 2005, Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125: 155-166.Google Scholar
  183. Wu, Q.S., and Xia, R.X., 2006, Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J. Plant Physiol. 163: 417-425.PubMedGoogle Scholar
  184. Xavier, L.J.C., and Germida, J.J., 2002, Response of lentil under controlled conditions to co-inoculation with arbuscular mycorrhizal fungi and rhizobia varying in efficacy. Soil Biol. Biochem. 34: 181-188.Google Scholar
  185. Xavier, L.J.C., and Germida, J.J., 2003, Selective interactions between arbuscular mycor-rhizal fungi and Rhizobium leguminosarum bv. viceae enhance pea yield and nutrition. Biol. Fert. Soils 37: 261-267.Google Scholar
  186. Yao, Q., Zhu, H.H., Chen, J.Z., and Christie, P., 2005, Influence of an arbuscular mycorrhizal fungus on competition for phosphorus between sweet orange and a leguminous herb. J. Plant Nutr. 28: 2179-2192.Google Scholar
  187. Zhang, X.H., Zhu, Y.G., Chen, B.D., Lin, A.J., Smith, S.E., and Smith, F.A., 2005, Arbuscular mycorrhizal fungi contribute to resistance of upland rice to combined metal contamination of soil. J. Plant Nutr. 28: 2065-2077.Google Scholar
  188. Zhang, X.H., Zhu, Y.G., Lin, A.J., Chen, B.D., Smith, S.E., and Smith, F.A., 2006, Arbuscular mycorrhizal fungi can alleviate the adverse effects of chlorothalonil on Oryza sativa L. Chemosphere 64: 1627-1632.PubMedGoogle Scholar
  189. Zhu, Y.G., Smith, S.E., Barritt, A.R., and Smith, F.A., 2001, Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars. Plant Soil 237: 249-255.Google Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • M. S. Beauregard
    • 1
    • 2
  • C. Hamel
    • 2
  • M. St.-Arnaud
    • 1
  1. 1.Institut de recherche en biologie végétaleJardin botanique de MontréalMontréalCanada
  2. 2.Semiarid Prairie Agricultural Research CentreAgriculture and Agri-Food CanadaSwift CurrentCanada

Personalised recommendations