Exact Envelope Computation for Moving Surfaces with Quadratic Support Functions

  • Margot Rabl
  • Bert Jüttler
  • Laureano Gonzalez-Vega


We consider surfaces whose support function is obtained by restricting a quadratic polynomial to the unit sphere. If such a surface is subject to a rigid body motion, then the Gauss image of the characteristic curves is shown to be a spherical quartic curve, making them accessible to exact geometric computation. In particular we analyze the case of moving surfaces of revolution.

Key words

envelope characteristic curve support function parameterization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdel-Malek, K., Yang, J., Blackmore, D. and Joy, K. (2006), Swept volumes: Fundation, perspectives, and applications, International Journal of Shape Modeling 12(1), 87-127.zbMATHCrossRefGoogle Scholar
  2. 2.
    Bottema, A. and Roth, B. (1979), Theoretical Kinematics, North-Holland, Amsterdam.zbMATHGoogle Scholar
  3. 3.
    Dupont, L., Lazard, D., Lazard S. and Petitjean, S. (2008), Near-optimal parameterization of the intersection of quadrics: {I. The generic algorithm, II. A classification of pencils and III. Parameterizing singular intersections}, Journal of Symbolic Computation 43(3), 168-232.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Flaquer, J., Gárate, G. and Pargada, M. (1992), Envelopes of moving quadric surfaces, Com-puter Aided Geometric Design 9(4), 299-312.zbMATHCrossRefGoogle Scholar
  5. 5.
    Peternell, M., Pottmann, H., Steiner, T. and Zhao, H. (2005), Swept volumes, Computer-Aided Design and Applications 2, 599-608.Google Scholar
  6. 6.
    Siˇr, Z., Gravesen, J. and Jüttler, B. (2008), Curves and surfaces represented by polynomial support functions, Theoretical Computer Science 392, 141-157.CrossRefMathSciNetGoogle Scholar
  7. 7.
    Wang, W., Goldman, R. and Tu, C. (2003), Enhancing Levin’s method for computing quadric-surface intersections, Computer Aided Geometric Design 20(7), 401-422.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Xia, J. and Ge, Q. J. (2001), On the exact representation of the boundary surfaces of the swept volume of a cylinder undergoing rational Bézier and B-spline motions, Journal of Mechanical Design 123(2), 261-265.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2008

Authors and Affiliations

  • Margot Rabl
    • 1
  • Bert Jüttler
    • 1
  • Laureano Gonzalez-Vega
    • 2
  1. 1.Institute of Applied GeometryJohannes Kepler UniversityLinzAustria
  2. 2.Departamenta de Matemáticas, Estadística y ComputatiónUniversidad de CantabriaSantanderSpain

Personalised recommendations