Advertisement

4-DOF Parallel Architecture for Laparoscopic Surgery

  • Mohammad Aamir Khan
  • Matteo Zoppi
  • Rezia Molfino

Abstract

This paper analyzes a new laparoscopic surgical setup with two surgical robots. Requirements and constraints are outlined and the architecture selected for the surgical robots is presented and discussed. Analytical models of the inverse and forward kinematics are provided together with a detailed analysis of mobility and constraints. The velocity kinematics is addressed and singularity analysis outlined.

Key words

parallel mechanisms robotic surgery minimally invasive surgery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asao, T., Kuwano, H., Mochiki, E. (2004), Laparoscopic surgery update for gastrointestinal malignancy, Journal of Gastroenterology 39, 309-318.CrossRefGoogle Scholar
  2. 2.
    Bonev, I.A., Zlatanov, D., Gosselin, C.M. (2002), Advantage of the modified Euler angles in the design and control of PKMs, in Proceedings International Conference PKS02, Chemnitz, Germany.Google Scholar
  3. 3.
    Cavusoglu, M.C., Villanueva, I., Tendick, F., (2001), Workspace analysis of robotic manipu-lator for a teleoperated suturing task, in Proceedings of IEEE/RSJ IROS, USA.Google Scholar
  4. 4.
    Darzi, A., Mackay, S. (2006), Recent advances in minimal access surgery, BMJ 324, 31-34.CrossRefGoogle Scholar
  5. 5.
    Faraz, A., Payandeh, S. (2), Engineering Approaches to Mechanical and Robotic Design for Minimally Invasive Surgeries, Kluwer Academic Publishers, Dordrecht.Google Scholar
  6. 6.
    Ferzli, G.S., Fingerhut, A. (2004), Trocar placement for laparoscopic abdominal procedures: A simple standardized method, J. of American College of Surgeons 198(1), 163-173.CrossRefGoogle Scholar
  7. 7.
    Lum, M.J.H., Rosen, J., Hannaford, B., Sinanan, M.N. (2006), Optimization of a spherical mechanism for a minimally invasive surgical robot: Theoretical and experimental approaches, IEEE Trans. on Biomed. Engrg. 53(7), 1140-1445.Google Scholar
  8. 8.
    Zlatanov, D., Benhabib, B., Fenton, R.G., (1995), A unifying framework for classification and interpretation of mechanism singularities, ASME J. of Mech. Design 117, 566-572.CrossRefGoogle Scholar
  9. 9.
    Zlatanov, D., Bonev, I., Gosselin, C., (2002), Constraint Singularities of parallel mechanisms, in Proceedings IEEE International Conference on Robotics and Automation ICRA02, Wash-ington, USA, pp. 496-502.Google Scholar
  10. 10.
    Zoppi, M., Zlatanov, D., Gosselin, C.M. (2005), Analytical kinematics models and special geometries of a class of 4-DOF parallel mechanisms, IEEE TRO 21(6), 1046-1055.Google Scholar
  11. 11.
    Zoppi, M., Zlatanov, D., Molfino, R. (2006), On the vel. analysis of interconnected chains mechanism, Int. J. MMT 41(11), 1346-1358.zbMATHMathSciNetGoogle Scholar
  12. 12.
    Zoppi, M. (2004), High dynamics parallel mechanisms: Contribution to force transmission and singularity analysis, PhD Thesis, DIMEC, University of Genoa, Italy.Google Scholar

Copyright information

© Springer Science+Business Media B.V 2008

Authors and Affiliations

  • Mohammad Aamir Khan
    • 1
  • Matteo Zoppi
    • 1
  • Rezia Molfino
    • 1
  1. 1.DIMECUniversity of GenovaGenovaItaly

Personalised recommendations