Advertisement

Digital Soil Mapping: A State of the Art

  • P. Lagacherie

Abstract

Digital Soil Mapping (DSM) can be defined as the creation and population of spatial soil information systems by numerical models inferring the spatial and temporal variations of soil types and soil properties from soil observation and knowledge and from related environmental variables. DSM is now moving toward the operational production of soil maps thanks to a set of researches that have been carried out for the last fifteen years. These researches dealt with various topics: the production and processing of soil covariates, the collection of soil data, the development of numerical models of soil prediction, the evaluation of the quality of digital soil maps and the representation of digital soil maps. The recent advances and open questions within each of these topics are successively examined.

The emergence of DSM as a credible alternative to fulfill the increasing worldwide demand in spatial soil data is conditioned to its ability to (i) increase spatial resolutions and enlarge extents and (ii) deliver a relevant information. The former challenge requires to develop a specific spatial data infrastructure for Digital Soil Mapping, to grasp Digital Soil Mapping onto existing soil survey programs and to develop soil spatial inference systems. The latter challenge requires to map soil function and threats (and not only “primary” soil properties), to develop a framework for the accuracy assessment of DSM products and to introduce the time dimension.

Keywords

Soil Property Soil Covariates Soil Data Spatial Data Infrastructure Geostatistical Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrecht, C., Huwe, B., Jahn, R., 2007. Chapter 31. Comparison of approaches for automated soil identification. In: P Lagacherie, A.B. McBratney and M. Voltz (Eds.), Digital Soil Mapping, an introductory perspective. Developments in soil science, vol. 31. Elsevier, Amsterdam, pp. 425–436.Google Scholar
  2. Baxter, S., Oliver, M., Archer, J.R., 2007. Chapter 35. The spatial distribution and variation of available P in agricultural topsoil in England & Wales in 1971, 1981, 1991 and 2001. In: P Lagacherie, A.B. McBratney and M. Voltz (Eds.), Digital Soil Mapping, an introductory perspective. Developments in soil science, vol. 31. Elsevier, Amsterdam, pp. 477–486.Google Scholar
  3. Behrens, T., Scholten, T., 2007. Chapter 25. A comparison of data-mining techniques in predictive soil mapping. In: P Lagacherie, A.B. McBratney and M. Voltz (Eds), Digital Soil Mapping, an introductory perspective. Developments in soil science, vol. 31. Elsevier, Amsterdam, pp. 353–364.Google Scholar
  4. Ben-Dor, E., Patkin, K., Banin, A., Karnieli, A., 2002. Mapping of several soil properties using DAIS-7915 hyperspectral scanner data – a case study over clayey soils in Israel. International Journal of Remote Sensing, 23(6), 1043–1062.CrossRefGoogle Scholar
  5. Bernoux, M., Arrouays, D., Cerri, C.E.P., Cerri C.C., 2007. Chapter 37. Regional organic carbon storage maps of the western Brazilian Amazon based on prior soil maps and geostatistical interpolation. In: P Lagacherie, A.B. McBratney and M. Voltz (Eds.), Digital Soil Mapping, an introductory perspective. Developments in soil science, vol. 31. Elsevier, Amsterdam, pp. 497–506.Google Scholar
  6. Boruvka, L., Penizek, V., 2007. Chapter 30. A test of an artificial neural network allocation procedure using the Czech Soil Survey of Agricultural Land data. In: P. Lagacherie, A.B. McBratney and M. Voltz (Eds.), Digital Soil Mapping, an introductory perspective. Developments in soil science, vol. 31. Elsevier, Amsterdam, pp. 415–424.Google Scholar
  7. Brus, D.J., de Gruijter, J.J., Van Groenigen, J.W., 2007. Chapter 14. Designing spatial coverage samples using the k-means clustering algorithm. In: P. Lagacherie, A.B. McBratney and M. Voltz (Eds.), Digital Soil Mapping, an introductory perspective. Developments in soil science, vol. 31. Elsevier, Amsterdam, pp. 183–192.Google Scholar
  8. Bui, E., Simon, D., Schoknecht, N., Payne, A., 2007. Chapter 15. Adequate prior sampling is everything: lessons from the Ord River basin, Australia. In: P. Lagacherie, A.B. McBratney and M. Voltz (Eds.), Digital Soil Mapping, an introductory perspective. Developments in soil science, vol. 31. Elsevier, Amsterdam, pp. 193–206.Google Scholar
  9. Burrough, P., 2007. Chapter 41. The display of digital soil data, 1976–2004. In: P. Lagacherie, A.B. McBratney and M. Voltz (Eds.), Digital Soil Mapping, an introductory perspective. Developments in soil science, vol. 31. Elsevier, Amsterdam, pp. 555–570.Google Scholar
  10. Carré, F., Girard, M.C., 2002. Quantitative mapping of soil types based on regression kriging of taxonomic distances with landform and land cover attributes. Geoderma 110(3,4), 241–263.CrossRefGoogle Scholar
  11. Chaplot, V., Walter, C., 2007. Chapter 38. Improving the spatial prediction of soils at local and regional levels through a better understanding of soil-landscape relationships: soil hydromorphy in the Armorican Massif of Western France. In: P. Lagacherie, A.B. McBratney and M. Voltz (Eds.), Digital Soil Mapping, an introductory perspective. Developments in soil science, vol. 31. Elsevier, Amsterdam, pp. 507–522.Google Scholar
  12. Cole, N., Boettinger, J., 2007. Chapter 27. Pedogenic understanding raster classification methodology for mapping soils, Powder River Basin, Wyoming. In: P. Lagacherie, A.B. McBratney and M. Voltz (Eds.), Digital Soil Mapping, an introductory perspective. Developments in soil science, vol. 31. Elsevier, Amsterdam, pp. 377–388.Google Scholar
  13. Daroussin, J., King, D., Le Bas, C., Vrscaj, B., Montanarella, L., 2007. Chapter 4. The Soil Geographical Database of Eurasia at scale 1:1 000 000: history and perspective in Digital Soil Mapping. In: P. Lagacherie, A.B. McBratney and M. Voltz (Eds.), Digital Soil Mapping, an introductory perspective. Developments in soil science, vol. 31. Elsevier, Amsterdam, pp. 55–66.Google Scholar
  14. DSM ESBN Working group 2006. Digital Soil Mapping as the support of Production of Functional Soil Maps. Dobos, E., Carré, F., Hengl, T., Reuter, H.I., Tóth, G. (eds). EUR 22123 EN, 68 pp. Office for Official Publications of the European Communities, Luxemburg.Google Scholar
  15. Dobermann, A., Simbahan G.C., 2007. Chapter 13. Methodology for using secondary information in sampling optimisation for making fine-resolution maps of soil organic carbon. In: P. Lagacherie, A.B. McBratney and M. Voltz (Eds.), Digital Soil Mapping, an introductory perspective. Developments in soil science, vol. 31. Elsevier, Amsterdam, pp. 167–182.Google Scholar
  16. Dobos, E., Montanarella, L., 2007. Chapter 9. The development of a quantitative procedure for soilscape delineation using digital elevation data for Europe. In: P. Lagacherie, A.B. McBratney and M. Voltz (Eds.), Digital Soil Mapping, an introductory perspective. Developments in soil science, vol. 31. Elsevier, Amsterdam, pp. 107–118.Google Scholar
  17. Dobos, E., Micheli, E., Montanarella, L., 2007. Chapter 36. The population of a 500-m resolution soil organic matter spatial information system for Hungary. In: P. Lagacherie, A.B. McBratney and M. Voltz (Eds.), Digital Soil Mapping, an introductory perspective. Developments in soil science, vol. 31. Elsevier, Amsterdam, pp. 487–496.Google Scholar
  18. Dusart, J., 2007 Chapter 6. Adapting soil mapping practices to the proposed EU INSPIRE directive. In: P. Lagacherie, A.B. McBratney and M. Voltz (Eds.), Digital Soil Mapping, an introductory perspective. Developments in soil science, vol. 31. Elsevier, Amsterdam, pp. 77–86.Google Scholar
  19. Feuerherdt, C., Robinson, N., Williams, S., 2007. Chapter 7. Storage, maintenance and extraction of digital soil data. In: P. Lagacherie, A.B. McBratney and M. Voltz (Eds.), Digital Soil Mapping, an introductory perspective. Developments in soil science, vol. 31. Elsevier, Amsterdam, pp. 87–96.Google Scholar
  20. Finke, P., 2007. Chapter 39. Quality assessment of digital soil maps: producers and users perspectives. In: P. Lagacherie, A.B. McBratney and M. Voltz (Eds.), Digital Soil Mapping, an introductory perspective. Developments in soil science, vol. 31. Elsevier, Amsterdam, pp. 523–542.Google Scholar
  21. Greve, M.H., Greve, M.B., 2007. Chapter 40. Using soil covariates to evaluate and represent the fuzziness of soil map boundaries. In: P. Lagacherie, A.B. McBratney and M. Voltz (Eds.), Digital Soil Mapping, an introductory perspective. Developments in soil science, vol. 31. Elsevier, Amsterdam, pp. 543–554.Google Scholar
  22. Grunwald, S., Ramasundaram, V., Comerford, N.V., Bliss, C.M., 2007. Chapter 42. Are current scientific visualization and virtual reality techniques capable to represent real soil-landscapes? In: P. Lagacherie, A.B. McBratney and M. Voltz (Eds.), Digital Soil Mapping, an introductory perspective. Developments in soil science, vol. 31. Elsevier, Amsterdam, pp. 571–580.Google Scholar
  23. Hengl, T., Heuvelink, G., Stein, A., 2004. A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma 120(1–2), 75–93.CrossRefGoogle Scholar
  24. Heuvelink, G.B.M., Brus, D.J., de Gruijter J.J., 2007. Chapter 11. Optimization of sample configurations for digital mapping of soil properties with universal kriging. In: P. Lagacherie, A.B. McBratney and M. Voltz (Eds.), Digital Soil Mapping, an introductory perspective. Developments in soil science, vol. 31. Elsevier, Amsterdam, pp. 137–152.Google Scholar
  25. Hollingsworth, I., Bui, E., Odeh, I., Ludwig, J., McLeod, P., 2007. Chapter 29. Rule-based land-unit mapping of the Tiwi Islands, Northern Territory, Australia. In: P. Lagacherie, A.B. McBratney and M. Voltz (Eds.), Digital Soil Mapping, an introductory perspective. Developments in soil science, vol. 31. Elsevier, Amsterdam, pp. 401–414.Google Scholar
  26. Howell, D., Kim, Y., Haydu-Houdeshell, C., Clemmer, P., Almaraz, R., Ballmer, M., 2007. Chapter 34. Fitting soil property spatial distribution models in the Mojave Desert for Digital Soil Mapping. In: P. Lagacherie, A.B. McBratney and M. Voltz (Eds.), Digital Soil Mapping, an introductory perspective. Developments in soil science, vol. 31. Elsevier, Amsterdam, pp. 465–476.Google Scholar
  27. Lagacherie, P., Legros, J.P., Burrough, P., 1995. A soil survey procedure using the knowledge of soil pattern established on a previously mapped reference area. Geoderma 65, 283–301.CrossRefGoogle Scholar
  28. Lagacherie,P., McBratney, A.B., 2007. Chapter 1. Spatial soil information systems and spatial soil inference systems: perspectives for Digital Soil Mapping. In: P. Lagacherie, A.B. McBratney and M. Voltz (Eds.), Digital Soil Mapping, an introductory perspective. Developments in soil science, vol. 31. Elsevier, Amsterdam, pp. 3–24.Google Scholar
  29. Lark, R.M., 2007. Chapter 23. Decomposing digital soil information by spatial scale. In: P. Lagacherie, A.B. McBratney and M. Voltz (Eds.), Digital Soil Mapping, an introductory perspective. Developments in soil science, vol. 31. Elsevier, Amsterdam, pp. 301–326.Google Scholar
  30. Madeira Netto, J.S., Robbez-Masson, J.-M., Martins, E., 2007. Chapter 17. Visible-NIR hyperspectal imagery for discriminating soil types in the la Peyne watershed, France. In: P. Lagacherie, A.B. McBratney and M. Voltz (Eds.), Digital Soil Mapping, an introductory perspective. Developments in soil science, vol. 31. Elsevier, Amsterdam, pp. 219–234.Google Scholar
  31. Mayr, T., Palmer, R., 2007. Chapter 26. Digital Soil Mapping: An England & Wales perspective. In: P. Lagacherie, A.B. McBratney and M. Voltz (Eds.), Digital Soil Mapping, an introductory perspective. Developments in soil science, vol. 31. Elsevier, Amsterdam, pp. 365–376.Google Scholar
  32. Mendonça-Santos, M.L., McBratney, A.B., Minasny, B., 2007. Chapter 21. Soil prediction with spatially decomposed environmental factors. In: P. Lagacherie, A.B. McBratney and M. Voltz (Eds.), Digital Soil Mapping, an introductory perspective. Developments in soil science, vol. 31. Elsevier, Amsterdam, pp. 269–280.Google Scholar
  33. Mermut A.R., Eswaran H., 2000. Some major developments in soil science since the mid-1960s Geoderma 100 (3–4), 403–426.Google Scholar
  34. Mérot, P., Squividant, H., Aurousseau, P., Hefting, P., Burt, T., Maitre, V., Kruk, M., Butturini, A., Thenail, C., Viaud, V. 2003. Testing a climato-topographic index for predicting wetlands distribution along an European climate gradient. Ecological Modelling 163(1–2), 51–71.CrossRefGoogle Scholar
  35. McBratney, A.B., Mendonça Santos, M.L., Minasny, B., 2003. On Digital Soil Mapping. Geoderma 117, 3–52.Google Scholar
  36. McKenzie, N., Gallant, J., 2007. Chapter 24. Digital Soil Mapping with improved environmental predictors and models of pedogenesis. In: P. Lagacherie, A.B. McBratney and M. Voltz (Eds.), Digital Soil Mapping, an introductory perspective. Developments in soil science, vol. 31. Elsevier, Amsterdam, pp. 327–352Google Scholar
  37. Minasny, B., McBratney, A.B., 2007. Mechanistic soil–landscape modelling as an approach to developing pedogenetic classifications. Geoderma 133(1–2), 138–149.Google Scholar
  38. Minasny, B., McBratney, A.B., 2007. Chapter 12. Latin hypercube sampling as a tool for Digital Soil Mapping. In: P. Lagacherie, A.B. McBratney and M. Voltz (Eds.), Digital Soil Mapping, an introductory perspective. Developments in soil science, vol. 31. Elsevier, Amsterdam, pp. 153–166.Google Scholar
  39. Odeh, I.O.A., Crawford, M., McBratney, A.B., 2007. Chapter 32. Digital mapping of soil attributes for regional and catchment modelling, using covariates, and statistical and geostatistical techniques. In: P Lagacherie, A.B. McBratney and M. Voltz (Eds.), Digital Soil Mapping, an introductory perspective. Developments in soil science, volume 31. Elsevier, Amsterdam, pp. 437–454.Google Scholar
  40. Robbez-Masson, J.M., 2007. Chapter 19. Producing dynamic cartographic sketches of soilscapes by contextual image processing in order to improve efficiency of pedological survey. In: P Lagacherie, A.B. McBratney and M. Voltz (Eds.), Digital Soil Mapping, an introductory perspective. Developments in soil science, vol. 31. Elsevier, Amsterdam, pp. 245–256.Google Scholar
  41. Rossiter, D.G., 2004. Digital soil resource inventories: status and prospects. Soil Use & Management 20(3), 296–301.CrossRefGoogle Scholar
  42. Saby, N., Arrouays, D., Boulonne, L., Jolivet,C., Pochot, A. 2007. Geostatistical assessment of Pb in soil around Paris, France Science of The Total Environment 367(1,15), 212–221.Google Scholar
  43. Saunders, A., Boettinger, J., 2007. Chapter 28. Incorporating Classification Trees into a Pedogenic Understanding Raster Classification Methodology, Green River Basin, Wyoming. In: P. Lagacherie, A.B. McBratney and M. Voltz (Eds.), Digital Soil Mapping, an introductory perspective. Developments in soil science, vol. 31. Elsevier, Amsterdam, pp. 389–400.Google Scholar
  44. Shepherd K.D., Walsh M.G., 2002. Development of reflectance spectral libraries for characterization of soil properties. Soil Science Society America Journal 66, 988–998.Google Scholar
  45. Taylor, J.A., Odeh, I.O.A., 2007. Chapter 33. Comparing discriminant analysis with binomial logistic regression, regression kriging and multi-indicator kriging for mapping salinity risk in northwest New South Wales, Australia. In: P. Lagacherie, A.B. McBratney and M. Voltz (Eds.), Digital Soil Mapping, an introductory perspective. Developments in soil science, vol. 31. Elsevier, Amsterdam, pp. 455–464.Google Scholar
  46. Thwaites, R.N., 2007. Chapter 20. Conceptual and digital soil-landscape mapping using Regolith-Catenary Units. In: P. Lagacherie, A.B. McBratney and M. Voltz (Eds.), Digital Soil Mapping, an introductory perspective. Developments in soil science, vol. 31. Elsevier, Amsterdam, pp. 257–268.Google Scholar
  47. Viscarra Rossel, R.A., Walwoort, D.J.J., Mc Bratney, A.B., Janik, L.K., Skjemstad., J.O. 2006. Visible, near infrared, mid-infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131, 59–75.CrossRefGoogle Scholar
  48. Walter, C., Lagacherie, P., Follain, S., 2007. Chapter 22. Integrating pedological knowledge into Digital Soil Mapping. In: P. Lagacherie, A.B. McBratney and M. Voltz (Eds.), Digital Soil Mapping, an introductory perspective. Developments in soil science, vol. 31. Elsevier, Amsterdam, pp. 281–300.Google Scholar
  49. Wilford, J., Minty, B., 2007. Chapter 16. The use of airborne gamma-ray imagery for mapping soils and understanding landscape processes. In: P. Lagacherie, A.B. McBratney and M. Voltz (Eds.), Digital Soil Mapping, an introductory perspective. Developments in soil science, vol. 31. Elsevier, Amsterdam, pp. 207–218.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • P. Lagacherie
    • 1
  1. 1.INRA Laboratoire détude des Interactions Sol Agrosystème Hydrosystème (LISAH)2 place Viala 34060 Montpellier cedex 1France

Personalised recommendations