Large Eddy Simulations of the Richtmyer–Meshkov Instability in a Converging Geometry

  • Manuel Lombardini
  • Ralf Deiterding
  • D. I. Pullin
Part of the Ercoftac Series book series (ERCO, volume 12)


This work presents on-going research on large-eddy simulations of shock-generated mixing in Richtmyer-Meshkov flow in converging geometries. A hybrid numerical method is used on each subgrid of the mesh hierarchy within the AMROC (adaptive mesh refinement object oriented C++) framework: it is a shock capturing method but reverts to a centered scheme with low numerical viscosity in regions of smoother flow. The stretched-vortex subgrid-scale model allows for the capturing of the small-scale mixing process between the two fluids. Results presented focus on the evolution of the mixing layer and its internal statistics including various spectra and p.d.f.s of mixed molar and mass fractions. A detailed quantitative analysis has also been conducted including space-time histories of instantaneous cylindrical shell-averages of diverse quantities, taken concentrically to the main shocks. Comparisons are made with the planar Richtmyer-Meshkov instability with reshock studied by Vetter and Sturtevant (1995) [1] and Hill et al. (2006).


Large-eddy simulations (LES) with strong shocks Richtmyer-Meshkov instability (RMI) Compressible turbulent mixing Adaptive mesh refinement (AMR) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vetter M, Sturtevant B (1995) Shock Waves 4:247–252CrossRefADSGoogle Scholar
  2. 2.
    Hill DJ, Pantano C, Pullin DI (2006) J Fluid Mech 557:29–61zbMATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Richtmyer RD (1960) Commun Pure Appl Math 13:297–319CrossRefMathSciNetGoogle Scholar
  4. 4.
    Meshkov EE (1969) Sov Fluid Dyn 4:101–108CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Mikaelian KO (2005) Phys Fluids 17(9), Art no 094105Google Scholar
  6. 6.
    Zhang Q, Graham MJ (1998) Phys Fluids 10(4):974–992CrossRefADSGoogle Scholar
  7. 7.
    Chisnell RF (1998) J Fluid Mech 354:357–375zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Misra A, Pullin DI (1997) Phys Fluids 9:2443–2454zbMATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Kosovic B, Pullin DI, Samtaney R (2002) Phys Fluids 14:1511–1522CrossRefADSGoogle Scholar
  10. 10.
    Pullin DI (2000) Phys Fluids 12:2311–2319CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Lundgren TS (1982) Phys Fluids 25:2193–2203zbMATHCrossRefADSGoogle Scholar
  12. 12.
    Pullin DI, Lundgren TS (2001) Phys Fluids 13:2553–2563CrossRefADSGoogle Scholar
  13. 13.
    Deiterding R (2005) In: Plewa T et al (eds) Adaptive mesh refinement – theory and applications. Springer, New YorkGoogle Scholar
  14. 14.
    Fedkiw RP, Aslam T, Merriman B, Osher S (1999) J Comput Phys 152(2):457–492zbMATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Hill DJ, Pullin DI (2004) J Comput Phys 194:435–450zbMATHCrossRefADSGoogle Scholar
  16. 16.
    Honein AE, Moin P (2004) J Comput Phys 201:531–545zbMATHCrossRefADSGoogle Scholar
  17. 17.
    Pantano C, Deiterding R, Hill DJ, Pullin DI (2007) J Comput Phys 221(1):63–87zbMATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Manuel Lombardini
    • 1
  • Ralf Deiterding
    • 2
  • D. I. Pullin
    • 1
  1. 1.Graduate Aeronautical LaboratoriesCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations