Advertisement

Management and Ecology of Phytoplasma Diseases of Grapevine And Fruit Crops

  • Rita Musetti
Part of the Integrated Management of Plant Pests and Diseases book series (IMPD, volume 3)

Abstract

Some aspects of the biology and management of phytoplasma diseases of grapevine and other fruit crops are revised. Management of phytoplasma-infected plants has mainly focussed on controlling the insect vectors and on roguing infected crops and weeds. The actual concept of “management” implies the application of measures compatible with the environment, and of cultural practices essential for the crops and economic thresholds. The production of genetically engineered plants by introducing disease-resistance genes into cultivated crops togheter with the use of resistance inducer microorganisms to reduce the disease symptoms, represent potential tools to control phytoplasma diseases.

Keywords

Insect Vector Catharanthus Roseus Aster Yellow Phytoplasma Strain Phytoplasma Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alma, A., & Conti, M. (2002). Flavescenza dorata ed altre fitoplasmosi della vite: il punto su vettori ed epidemiologia.Informatore Fitopatologico, 10, 31-35.Google Scholar
  2. Bertamini, M., Nedunchezhian, N., Tomasi, F., & Grando, S. (2002) Phytoplasma [(Stolbur-subgroup (Bois Noir-BN)] infection inhibits photosynthetic pigments, ribulose-1,5-biphosphatecarboxylase and photosynthetic activities in field grown grapevine (Vitis vinifera L. cv. Chardonnay) leaves. Physiological and Molecular Plant Pathology, 61, 357-366.CrossRefGoogle Scholar
  3. Bianco, P. A., Casati, P., & Marziliano, N. (2004) Detection of phytoplasmas associated with grapevine flavescence doré disease using real-time PCR. Journal of Plant Pathology, 86, 257–261.Google Scholar
  4. Borgo, M. (1996). Diffusione di Legno Nero e Flavescenza Dorata. L’Informatore Agrario, 52, 72-75.Google Scholar
  5. A. Ciancio & K. G. Mukerji (eds.), Integrated Management of Diseases Caused by Fungi, Phytoplasma and Bacteria, 43-60. (c) Springer Science+Business Media B.V. 2008Google Scholar
  6. Bosco, D., Minucci, C., Boccardo, G., Conti, M. (1997). Differential acquisition of chrysanthemum yellows phytoplasma by three leafhoppers species. Entomology Experimental Applied, 83, 219-224.CrossRefGoogle Scholar
  7. Boudon-Padieu, E., Larrue, J. & Caudwell, A. (1989). ELISA and Dot-Blot detection of flavescence doré-MLO in individual leafhopper vectors during latency and inoculative state. Current Microbiology, 19, 357-364.CrossRefGoogle Scholar
  8. Bressan, A., Clair, D., Semetey, O., & Boudon-Padieu, E. (2005). Effect of two strain of Flavescence doré phytoplasma on the survival and fecundity of the experimental leafhopper vector Euscelidius variegatus Kirschbaum. Journal of Invertebrate Pathology, 89, 144-149.PubMedCrossRefGoogle Scholar
  9. Carraro, L., Loi, N., Ermacora, P., Gregoris, A., & Osler, R. (1998a). Transmission of pear decline using naturally infected Cacopsylla pyri. Acta Horticulturae, 472, 665-668.Google Scholar
  10. Carraro, L., Osler, R., Loi, N., Ermacora, P., & Refatti, E. (1998b). Transmission of European stone fruit yellows phytoplasma by Cacopsylla pruni. Journal of plant Pathology, 80, 233-239.Google Scholar
  11. Carraro, L., Ferrini, F., Ermacora, P., & Loi, N. (2002). Role of wild Prunus species in the epidemiology of European stone fruit yellows. Plant Pathology, 51, 513-517.CrossRefGoogle Scholar
  12. Carraro, L., & Ermacora, P. (2004). Flavescenza dorata e giallumi della vite: recenti conoscenze. Notiziario ERSA,6, Suppl. 5, 3-7.Google Scholar
  13. Carraro, L., Ermacora, P., Loi, N. & Osler, R. (2004). The recovery phenomenon in apple proliferation-infected apple trees. Journal of Plant Pathology, 86, 141-146.Google Scholar
  14. Caudwell, A. (1961). Les phénoménes de rétablissement chez la Flavescence doré de la vigne. Annales des Epiphyties12, 347-354.Google Scholar
  15. Caudwell, A. (1957). Deux annés d’etude sur la Flavescence doré, nouvelle maladie grave de la vigne. Annales de l’Amélioration des Plantes 12: 359-383.Google Scholar
  16. Chen, T. A., Lei, J. D., & Lin, C. P. (1992). Detection and identification of plant and insect mollicutes. In: The mycoplasmas, R. F. Withcomb, & J.G. Tully, 5, Eds. Academic Press, New York, 393-424.Google Scholar
  17. Choi, Y. H., Tapias, E. C., Kim, H. K., Lefeber, A. W. M., Erkelens, C., Verhoeven, J. T. J., et al. (2004). Metabolic discrimination of Catharanthus roseus leaves infected by phytoplasma using H-NMR spectroscopy and multivariate data analysis. Plant Physiology 135: 2398-2410.PubMedCrossRefGoogle Scholar
  18. Christensen, N. M., Axelsen, K. B., Nicolaisen M., & Schulz, A. (2005). Phytoplasmas and their interactions with hosts. Trends in Plant Sciences 10 (11): 526-535.CrossRefGoogle Scholar
  19. Conti, M. (2001): Giallumi della vite. Informatore Fitopatologico, 4, 35-40.Google Scholar
  20. Credi, R., Terlizzi, F., Cricca, L., & Dradi, D. (2002). Studi epidemiologici sul Legno Nero della vite in Emilia-Romagna. Petria 12, 441-443.Google Scholar
  21. Daire X., Clair, D., Larrue, J., Boudon-Padieu, E., & Caudwell, A. (1993). Diversity among Mycoplasma-like organisms inducing grapevine yellows in France. Vitis, 32, 159-163.Google Scholar
  22. Daire, X., Clair, D., Reinert, W., & Boudon-Padieu, E. (1997). Detection and differentiation of grapevine yellows phytoplasmas belonging to the elm yellows group and to the stolbur subgroup by PCR amplification of non ribosomal DNA. European Journal of Plant Pathology 103 (6): 507-514.CrossRefGoogle Scholar
  23. Doi, Y., Teranaka, M., Yora, K., & Asuyama, H. (1967). Mycoplasma or PLT group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches’broom, aster yellows, or paulownia witches’broom. Annals of the Phytopathological. Society of Japan 33: 259-266.Google Scholar
  24. EPPO. (2006). European and Mediterranean Plant Protection Organisation. Candidatus Phytoplasma mali. EPPO Bulletin 36:121-125.Google Scholar
  25. Favali, M. A., & Lombardo, G. (1970). Thymidine-H3 labelling of mycoplasma in sieve cells. Annals of Microbiology 20: 81-83.Google Scholar
  26. Firrao, G., Gibb, K., & Streten, C., (2005). Short taxonomic guide to the genus “Candidatus Phythoplasma”. Journal of Plant Patology, 87 (4, special issue), 249-263.Google Scholar
  27. Frisinghelli, C., Delaiti, L., Grando, M. S., Forti, D., & Vindimian, M.E. (2000). Cacopsylla costalis (Flor, 1861) as a vector of Apple Proliferation in Trentino. Journal of Phytopathology, 148, 425-431.CrossRefGoogle Scholar
  28. Garcia-Chapa, M., Sabaté, J., Lavina, A., & Battle, A. (2005). Role of Cacopsylla pyri in the epidemiology of pear decline in Spain. European Journal of Plant Pathology, 111, 9-17.CrossRefGoogle Scholar
  29. Gatineau, F., Larrue, J., Clair, D., Lorton, F., Richard-Molard, M., & Boudon-Padieu, E. (2001). A new natural planthopper vector of stolbur phytoplasma in the genus Pentastiridius(Hemiptera: Cixiidae). European Journal of Plant Pathology, 107, 263–271.CrossRefGoogle Scholar
  30. Gundersen, D. E., Lee, I. M., Rehner, S. A., Davis, R. E., Kingsbury, D. T. (1994). Phylogeny of mycoplasmalike organisms (phytoplasmas): A basis for their classification. Journal of Bacteriology, 176, 5244-5254.PubMedGoogle Scholar
  31. Hadidi, A., Czosnek, H., & Barba, M. (2004). DNA microarrays and their potential applications for the detection of plant viruses, viroids and phytoplasmas. Journal of Plant Pathology, 86, 97-104.Google Scholar
  32. IRPCM. (2004). International Research Programme on Comparative Mycoplasmology, IRPCM, Phytoplasma/Spiroplasma Working Team — Phytoplasma Taxonomy Group. “Candidatus Phytoplasma”, a taxon for the wall-less, non helical prokaryotes that colonise plant phloem and insects. International Journal of Systematic and Evolutionary Microbiology, 54, 1243-1255. CrossRefGoogle Scholar
  33. Jagoueix-Eveillard, S., Tarendeau, F., Guolter, K., Danet, J-L., Bové, J. M., & Garnier, M. (2001). Catharanthus roseus genes regulated differentially by Mollicute infections. Molecular Plant-Microbe Interactions, 14, 225-233.PubMedCrossRefGoogle Scholar
  34. Jarausch, W., Eyquard, M., Lansac, M., Mohns, M., & Dosba, F. (2000a). Susceptibility and tolerance of new French Prunus domesticacultivars to European stone fruit yellows phytoplasmas. Journal of Phytoplathology 148: 489-493.CrossRefGoogle Scholar
  35. Jarausch, W., Saillard, C., Helliot, B., Garnier, M. & Dosba, F. (2000b). Genetic variability of apple proliferation phytoplasmas as determined by PCR-RFLP and sequencing of a non-ribosomal fragment. Molecular Cell Probes, 14, 17-24.CrossRefGoogle Scholar
  36. Kison, H., Kirkpatrick, B. C., & Seemüller, E. (1997). Genetic comparison of the peach yellow leaf roll agent with European fruit tree phytoplasmas of the apple proliferation group. Plant Pathology, 46, 538-544.CrossRefGoogle Scholar
  37. Kison, H., & Seemüller, E. (2001). Differences in strain virulence of the European Stone Fruit Yellows phytoplasma and susceptibility of stone fruit trees on various rootstocks to this pathogen. Journal of Phytopathology, 149, 533-241.CrossRefGoogle Scholar
  38. Kummert, J., & Rufflart, G. (1997). A preliminary report on the detection of phytoplasma by PCR. Biochemica. 1, 19-22.Google Scholar
  39. Langer, M., & Maixner, M. (2004). Molecular characterization of grapevine yellows associated phytoplasmas of the stolbur group based on RFLP-analysis of non-ribosomal DNA. Vitis, 43, 191-200.Google Scholar
  40. Lauer, U., & Seemüller, E. (2000). Physical map of the Chromosome of the Apple Proliferation Phytoplasma. Journal of Bacteriology, 182, 1415-1418.PubMedCrossRefGoogle Scholar
  41. Lee, I. M., Zhao, Y., & Bottner, K. D. (2005). Novel insertion sequence-like elements in phytoplasma strains of the aster yellows group are putative new members of the IS3 family. FEMS Microbiological letters, 242, 353-360.CrossRefGoogle Scholar
  42. Lee, I. M., Davis, R. E., Chen, T. A., Chiykowski, L. N., & Fletcher, J. (1992). A genotype-based system for identification and classification of mycoplasmalike organisms (MLOs) in the aster yellows MLO strain cluster. Phytopathology, 82, 977-986.CrossRefGoogle Scholar
  43. Lee, I. M., Davis, R. E., & Gundersen-Rindal, D. E. (2000). Phytoplasma: phytopathogenic mollicutes. Annual Review of Microbiology, 54, 221-255.PubMedCrossRefGoogle Scholar
  44. Lee, I. M., Gundersen-Rindal, D. E., & Bertaccini, A. (1998). Phytoplasma: ecology and genomic diversity. Phytopathology, 88, 1359-1366.CrossRefPubMedGoogle Scholar
  45. Lee, I. M., Gundersen-Rindal, D. E., Davis, R. E., & Bartoszyk, M. (1998) Revised classification scheme of phytoplasmas based on RFLP analyses of rRNA and ribosomal protein gene sequences. International Journal of Systematic Bacteriology, 48, 1153-1169.CrossRefGoogle Scholar
  46. Lee, I. M., Gundersen-Rindal, D. E., Hammond, R. D., & Davis, R. E. (1994). Use of mycoplasmalike organisms (MLOs) group specific oligonucleotide primers for nested-PCR assay to detect mixed-MLO infection in a single host plant. Phytopathology, 84, 559-566.CrossRefGoogle Scholar
  47. Lherminier, J., Benhamou, N., Larrue, J., Milet, M. L., Boudon-Padieau, E., Nicole, M., & Blein, J. P. (2003). Cytological characterization of elicitin induced protection in tobacco plants infected by Phytophthora parasitica or phytoplasma. Phytopathology, 93, 1308-1319.CrossRefPubMedGoogle Scholar
  48. Lingua, G., D’Agostino, G., Massa, N., Antosiano, M., & Berta, G. (2002). Mycorrhiza-induced differential response to a yellows disease in tomato. Mycorrhiza, 12, 191-198.PubMedCrossRefGoogle Scholar
  49. Loi, N., Ermacora, P., Carraro, L., Osler, R., & Chen, T. A. (2002). Production of monoclonal antibodies against apple proliferation phytoplasma and their use in serological detection. European Journal of Plant Pathology, 108, 81-86.CrossRefGoogle Scholar
  50. Maixner, M., (1994). Transmission of German grapevine yellows (Vergilbungskrankheit) by the planthopper Hyalesthes obsoletus (Auchenorrhyncha:Cixiidae). Vitis, 33,103-104.Google Scholar
  51. Maixner, M., Langer, M., & Gerhard, Y. (2006). Epidemiological characteristics of bois noir type I (“Grapevine yellows-current developments and unsolved questions”). Proceedings 15th meeting of the International Council for the Study of Virus and Virus-like Diseases of Grapevine (ICVG), 3-7 April 2006, Stellenbosch, South Africa: 86-87.Google Scholar
  52. Marcone, C., & Seemüller, E. (2001). A chromosome map of the European Stone Fruit Yellows phytoplasma. Microbiology, 147, 1213-1221.PubMedGoogle Scholar
  53. Martini, M., Botti, S., Marcone, C., Marzachí, C., Casati, P., Bianco, P. A., Benedetti, R., Bertaccini A., (2002). Genetic variability among Flavescence doré phytoplasmas from different origins in Italy and France. Molecular and Cellular Probes, 16, 197-208.PubMedCrossRefGoogle Scholar
  54. Marzachí, C., & Bosco D. (2005). Relative quantification of phytoplasma in their plant and insect hosts: a real time PCR based method to quantify CY (16Sr I) phytoplasma in infected daisy and leafhopper vector. Molecular Biotechnology, 30, 117-127.PubMedCrossRefGoogle Scholar
  55. Marzorati, M., Alma, A., Sacchi, L., Pajoro, M., Palermo, S., Brusetti, L., et al. (2006). A novel Bacteroidetes symbiont is localized in Scaphoideus titanus, the insect vector of Flavescence doré in Vitis vinifera. Applied and Environmental Microbiology, 72, 1467-1475.PubMedCrossRefGoogle Scholar
  56. McCoy, R. E., Caudwell, A., Chang, C. J., Chen, T. A., Chiykowsky, L. N., Cousin, N. T., et al. (1989). Plant diseases associated with Mycoplasma-like organisms. In: Whitcomb, R.F. & Tully, G.J. Editors. The Mycoplasmas vol V. San Diego, California: Academic Press, 546-562.Google Scholar
  57. Morvan, G., Castelain, C., Chastelliere, M. G., & Audergon, J. M. (1991). An account of the attempts at controlling apricot chlorotic leaf roll with cross protection. Acta Horticulturae, 293, 555-561.Google Scholar
  58. Musetti, R. (2006). Patogeni e piante di interesse agronomico: un approccio morfologico. In: 1956-2006: 50 anni di Microscopia in Italia tra storia, progresso ed evoluzione. Quaglino D., Falcieri E., Catalano M., Diaspro A., Montone A., Mengucci P., & Pellicciari C., (Eds.). Pavia, Italy: 325-334.Google Scholar
  59. Musetti, R., & Favali, M. A. (2003). Calcium localization and X-ray microanalysis in Catharanthus roseus L. infected with phytoplasmas. Micron,34, 387-393.PubMedCrossRefGoogle Scholar
  60. Musetti, R., & Favali, M. A. (2004). Microscopy Techniques Applied to the Study of Phytoplasma Diseases: Traditional and Innovative Methods. In: Current Issues on Multidisciplinary Microscopy Research and Education (Mendez-Vilas A., Labajos-Broncano L. Eds.) FORMATEX Book Series Nˆ2, pp. 72-80.Google Scholar
  61. Musetti, R., Favali, M. A., & Pressacco, L. (2000). Histopathology and polyphenol content in plants infected by phytoplasmas. Cytobios, 102, 133-147.PubMedGoogle Scholar
  62. Musetti, R., Martini, M., Borselli, S., & Osler, R. (2005a). Funghi endofiti della vite con possibile implicazione nel recovery da Flavescenza dorata. Petria, 15, 141-143.Google Scholar
  63. Musetti, R., Martini, M., Ermacora, P., Ferrini, F., Loi, N., & Osler, R. (2008). Phytoplasma associated with apple proliferation. In: Characterization, Diagnosis & Management of Phytoplasmas (N.A. Harrison, G.P. Rao & C. Marcone Eds.) Studium Press LLC, Houston, Texas, U.S.A, 35-58.Google Scholar
  64. Musetti, R., Scaramagli, S., Vighi, C., Pressacco, L., Torrigiani, P., & Favali, M. A. (1999). The involvement of polyamines in phytoplasma-infected periwinkle (Catharanthus roseus L.) plants. Plant Biosystems, 133, 37-45.Google Scholar
  65. Musetti, R., Sanità di Toppi, L., Ermacora, P., & Favali, M. A. (2004). Recovery in apple trees infected with the apple proliferation phytoplasma: an ultrastructural and biochemical study. Phytopathology, 94, 203-208.CrossRefPubMedGoogle Scholar
  66. Musetti, R., Sanità di Toppi, L., Martini, M., Ferrini, F., Loschi, A., Favali, M. A., & Osler, R. (2005). Hydrogen peroxide localisation and antioxidant status in the recovery of apricot plants from european stone fruit yellows. European Journal of Plant Pathology, 112, 53-61.CrossRefGoogle Scholar
  67. Musetti, R., Sanità di Toppi, L., Marabottini, R., Borselli, S., Martini, M., Badiani, M., Osler, R. (2006). The recovery of grapevine from phytoplasmas: variation of antioxidant status in leaf tissues. Proceedings 15th meeting of the International Council for the Study of Virus and Virus-like Diseases of Grapevine (ICVG), 3-7 April 2006, Stellenbosch, South Africa: 100-102.Google Scholar
  68. Osler, R., & Carraro, L., (2004). Gli scopazzi del melo. Informatore Fitopatologico, 5, 3-6.Google Scholar
  69. Osler, R, Carraro, L, Ermacora, P, Ferrini, F, Loi, N., Loschi, A., Martini, M., Mutton, P.B., Refatti, R. (2003). Roguing: a controversial practice to eradicate grape yellows caused by phytoplasmas. Proceeding of the 14th ICVG meeting, Locorotondo (Bari), Italy, p. 68.Google Scholar
  70. Osler, R., Loi, N., Carraro, L., Ermacora, P., Refatti, E. (2000). Recovery in plants affected by phytoplasmas. In: Proceedings of the 5th Congress of European Foundation for Plant Pathology. (Società Italiana di Patologia Vegetale Ed.), Taormina, Italy, 589-592.Google Scholar
  71. Pavan, F., Bellomo, C., Vidoni, F., Bigot, G., Ostan, M., Boccalon, W., et al. (2004). Efficacia della lotta insetticida contro Scaphoideus titanus Ball in Friuli-Venezia Giulia. Notiziario ERSA, Supplemento 5, 11-20.Google Scholar
  72. Pavan, F., Carraro, L., Vettorello, G., Pavanetto, E., Girolami, V., & Osler, R. (1997). Flavescenza dorata nei vigneti delle colline trevigiane. L’Informatore Agrario, 53, 73-78.Google Scholar
  73. Pertot, I., Musetti, R., Pressacco, L., & Osler, R. (1998). Changes in Indole-3-acetic acid level in micropropagated tissues of Catharanthus roseus L. infected by the agent of the clover phyllody and effect of exogenous auxins on phytoplasma morphology. Cytobios, 95, 13-23.Google Scholar
  74. Prince, J. P., Davis, R. E., Wolf, T. K., Lee, I. M., Mogen, B. D., Dailly, E. L., et al. (1993). Molecular detection of diverse mycoplasma like organisms (MLOs) associated with grapevine yellows and their classification with aster yellows, X-disease and elm yellows MLOs. Phytopathology, 83, 1130-1137.CrossRefGoogle Scholar
  75. Refatti, E. (1967). Pear decline and moria. In: Virus diseases of apples and pears. Technical Communication, Commonwealth Bureau of Horticulture and Plantation CropsNo. 30, pag. 108.Google Scholar
  76. Seddas, A., Meignoz, R., Daire, X., & Boudon-Padieu, E., (1996). Generation and characterization of monoclonal antibodies to Flavescence doré phytoplasma: serological relationships and differences in electroblot immunoassay profiles of Flavescence doré and Elm yellows phytoplasmas. European Journal of Plant Pathology, 102, 757-764.CrossRefGoogle Scholar
  77. Seemüller, E., & Schneider, B. (2004). “Candidatus Phytoplasma mali”, “Candidatus Phytoplasma pyri” and “Candidatus Phytoplasma prunorum” the casual agents of apple proliferation, pear decline and European stone fruit yellows, respectively. International Journal for Systematic and Evolutionary Microbiology, 54, 1217-1226.CrossRefGoogle Scholar
  78. Seemüller, E., Schneider, B., Maurer, R., Ahrens, U., Daire, X., Kison, H., Lorenz, K.H., Firrao, G., Avinent, L., & Sears, B.B. (1998). Phylogenetic classification of phytopathogenic mollicutes by sequence analysis of 16S ribosomal DNA. International Journal of Systematic Bacteriology, 44, 440-446.Google Scholar
  79. Sforza, A., Clair, D., Daire, X., Larrue, J., & Boudon-Padieu, E. (1998). The role of Hyalesthes obsoletus (Hemiptera: Cixiidae) in the occurrence of bois noir of grapevines in France. Journal of Phytopathology, 146, 549-556.CrossRefGoogle Scholar
  80. Suzuki, S., Oshima, K., Kakizawa S., Arashida R., Jung H-Y., Yamaji Y., et al. (2006). Interaction between the membrane protein of a pathogen and insect microfilament complex determines insect-vector specificity. Proceedings National Academy of Sciences USA, 103, 4252-4257.CrossRefGoogle Scholar
  81. Tan, P. Y., & Whitlow, T. (2001). Physiological responses of Catharanthus roseus (periwinkle) to ash yellows phytoplasmal infection. New Phytologist, 150, 757-769.CrossRefGoogle Scholar
  82. Tedeschi, R., Bosco, D., & Alma, A. (2002). Population dynamics of Cacopsylla melanoneura (Homoptera: Psyllidae), a vector of apple proliferation phytoplasma in northwestern Italy. Journal of Economic Entomology, 95, 544-551.PubMedCrossRefGoogle Scholar
  83. Torres, E., Bertolini, E., Cambra, M., Monton, C., & Martin, M. P. (2005). Real-time PCR for simultaneous and quantitative detection of quarantine phytoplasmas from apple proliferation (16SrX) group. Molecular and Cellular Probes, 19, 334-340.PubMedCrossRefGoogle Scholar
  84. Weintraub, P. G., & Beanland, L.(2006). Insect vectors of phytoplasmas. Annual Review of Entomology, 51, 91-111.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Rita Musetti
    • 1
  1. 1.Dipartimento di Biologia e Protezione delle PianteUniversitá di Udine33100 UdineItaly

Personalised recommendations