Reduction of the Land-Based Discharges to the Curonian Lagoon in a View of a Climate Change Perspective

  • Artūras Razinkovas
  • Inga Dailidienė
  • Renata Pilkaitytė
Part of the NATO Science for Peace and Security Series book series (NAPSC)

Abstract

Following the EU Water Framework Directive along with the earlier Nitrate and Wastewater treatment directives there was a national programme to reduce the nutrient and organic load into the Nemunas river and the Curonian lagoon that was adopted in 2006. However, the implementation of the programme could shift N:P ratio even more towards the nitrogen limitation, facilitating the development of the cyanobacteria blooms. The role of the foreseen climatic trends in the region discussed along with the possible ecological consequences.

Keywords

Nutrient load reduction climate change eutrophication estuarine lagoon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carrick, H.J., C.L. Schelske, F.J. Aldridge, and M.F. Coveney, 1993. Assessment of Phytoplankton Nutrient Limitation in Productive Waters: Application of Dilution Bioassays. Can. J. Fish. Aquat. Sci. 50:2208-2221.CrossRefGoogle Scholar
  2. Gailiušis, B. 2000. The analysis of hydrometeorological regime and hydraulic environ-ment. In Klaipeda port. Economy and ecology (eds. Lazauskiene L.L., G. Vaitonis, and A. Draugelis), pp. 37-48. Baltic ECO.Google Scholar
  3. Hägerhäll-Aniansson, B. 2001. Nitrogen fixation in the Baltic Sea. Brief guide for environ-mental managers. University of Kalmar, Kalmar Vol. 1, pp. 20.Google Scholar
  4. Havens, K.E., R.T. James, T.L. East, and V.H. Smith, 2003. N:P ratios, light limitation, and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollution. Environ. Pollut. 122:379-390.CrossRefGoogle Scholar
  5. Heiskanen, A.-S. and K. Olli, 1996. Sedimentation and buoyancy of Aphanizomenon cf. flos-aquae (Nostocales, Cyanophyta) in a nutrient-replete and nutrient-deplete coastal area of the Baltic Sea. Phycologia 35(6):94-101.CrossRefGoogle Scholar
  6. Kanoshina, I., U. Lips, and J.-M. Leppänen, 2003. The influence of weather conditions (tem-perature and wind) on cyanobacterial bloom development in the Gulf of Finland (Baltic Sea). Harmful Algae 2:29-41.CrossRefGoogle Scholar
  7. Kavaliauskiene, J. 1996. Algae of Lithuanian lakes. Geography Institute Vilnius, 174 p. (in Lithuanian).Google Scholar
  8. Kononen, K., 1992. Dynamics of the toxic cyanobacterial blooms in the Baltic Sea. Finn. Mar. Res. 261:3-36.Google Scholar
  9. Nixdorf, B. and S. Hoeg, 1993. Phytoplankton-community structure, succession and chlo-rophyll content in Lake Mueggelsee from 1979 to 1990. Int. Rev. Gesamt. Hydrobiol. 78:359-377.CrossRefGoogle Scholar
  10. Olenina, I., 1998. Long-term changes in the Kursiu Marios lagoon: eutrophication and phy-toplankton response. Ekologija 1:56-65.Google Scholar
  11. Oliver, R.L. and G.G. Ganf, 2000 Freshwater blooms. In The ecology of cyanobacteria. Their diversity in time and space (eds. Whitton B.A. and M. Potts), pp. 149-194. Kluwer, Dordrecht, The Netherlands.Google Scholar
  12. Pilkaityte, R. and A. Razinkovas, 2006. Factors controlling phytoplankton blooms in a tem-perate estuary: nutrient limitation and physical forcing. Hydrobiologia 555(1):41-48.CrossRefGoogle Scholar
  13. Pilkaityte, R., 2007. Spring-summer transition in the Curonian lagoon (SE Baltic Sea) phyto-plankton community, Transitional Waters Bulletin, 1(1), 39-47.Google Scholar
  14. Pilkaityte, R. and A. Razinkovas. 2007. Seasonal changes in phytoplankton composition and nutrient limitation in a shallow Baltic lagoon. Boreal Environ Res 12(5):551-559.Google Scholar
  15. Plinski, M. and T. Jozwiak, 1999. Temperature and N:P ratio as factors causing blooms of blue-green algae in the Gulf of Gdansk. Oceanologia 41(1):73-80.Google Scholar
  16. Razinkovas, R. Pilkaityte, 2002. Factors limiting phytoplankton development in the Curonian lagoon, Jura ir aplinka, 1(6), 39-46. (in Lithuanian)Google Scholar
  17. Razinkovas, A., Bliudziute, L., Erturk, A., Ferrarin, C., Lindim, C., Umgiesser, G. and Zemlys, P. 2005. Curonian lagoon: a modelling study- Lithuania, in: Modeling Nutrient Loads and Response in River and Estuary Systems. Report No. 271., R.C. Russo ed., Committee on the Challenges of Modern Society, North Atlantic Treaty Organization., Brussels, pp. 194-222.Google Scholar
  18. Schiewer, U., 1997. Design, experiences and selected results of meso- and microcosm experi-ments in shallow coastal waters 1981/95. Rostock. Meeresbiolog. Beitr. 5:9-35.Google Scholar
  19. Sileika, A.S., Stålnacke P., Kutra S., Gaigalis K., Berankiene L., 2006.Temporal and spatial variation of nutrient levels in the Nemunas River (Lithuania and Belarus). Environ. Monit. Assess. Nov, 122(1-3):335-354.CrossRefGoogle Scholar
  20. Tilickis, B., 2005. The changes of water chemical compositions in the Lithuanian watersheds. Klaipeda University Press, Lithuania, 199 pp. (in Lithuanian).Google Scholar

Copyright information

© Springer Science + Business Media B. V 2008

Authors and Affiliations

  • Artūras Razinkovas
    • 1
  • Inga Dailidienė
    • 1
    • 2
  • Renata Pilkaitytė
    • 1
  1. 1.Coastal Research & Planning InstituteKlaipeda UniversityLithuania
  2. 2.Department Geophysical SciencesKlaipeda UniversityLithuania

Personalised recommendations