Recent Application of Intronic MicroRNA Agents in Cosmetics

  • Shi-Lung Lin
  • David T. S. Wu
  • Shao-Yao Ying

Abstract Utilization of gene silencing effectors, such as microRNA (miRNA) and small hairpin RNA (shRNA), provides a powerful new strategy for human skin care in vivo, particularly for hyperpigmentation treatment and aging prevention. For example, tyrosinase (Tyr), a melanocytic membrane-bound glycoprotein, is the rate-limiting enzyme critical for melanin (black pigment) biosynthesis in skins and hairs. There are over 54 native microRNA capable of targeting human tyrosinase for skin whitening and lightening. In this study, we have designed a mir-434-5p homologue and used it to successfully demonstrate the feasibility of miRNA-mediated skin whitening in vitro and in vivo. Under the same experimental condition in trials, Pol-II-directed intronic mir-434-5p expression did not cause any detectable sign of cytotoxicity, whereas siRNAs targeting the same sequence induced certain non-specific mRNA degradation as previously reported. Because the intronic miRNA-mediated gene silencing pathway is tightly regulated by multiple intracellular surveillance systems, including Pol-II transcription, RNA splicing, exosome digestion and NMD processing, the current findings underscore the fact that intronic miRNA agents, such as mir-434-5p homologues, are effective, target-specific and safe to be used for skin whitening without any overt cytotoxic effect. Given that the human skins also express a variety of native miRNAs, we may re-design these miRNAs based on their individual functions for skin care, which will provide significant insights into areas of opportunity for new cosmetic interventions.


microRNA (miRNA) intronic microRNA (Id-miRNA) mir-434-5p tyrosinase (Tyr) hyaluronidase (Hyal) RNA interference (RNAi) skin whitening anti-aging cosmetics. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brantl S. (2002). Antisense-RNA regulation and RNA interference. Biochimica et Biophysica Acta 1575: 15-25.PubMedGoogle Scholar
  2. 2.
    Clement JQ, Qian L, Kaplinsky N, Wilkinson MF. (1999). The stability and fate of a spliced intron from vertebrate cells. RNA 5: 206-220.CrossRefPubMedGoogle Scholar
  3. 3.
    Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411: 494-498.CrossRefPubMedGoogle Scholar
  4. 4.
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806-811.CrossRefPubMedGoogle Scholar
  5. 5.
    Ghosh S, Garcia-Blanco MA. (2000). Coupled in vitro synthesis and splicing of RNA polymerase II transcripts. RNA 6: 1325-1334.CrossRefPubMedGoogle Scholar
  6. 6.
    Grant SR. (1999). Dissecting the mechanisms of posttranscriptional gene silencing: divide and conquer. Cell 96: 303-306.CrossRefPubMedGoogle Scholar
  7. 7.
    Grimm D, Streetz KL, Jopling CL, et al. (2006). Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441: 537-541.CrossRefPubMedGoogle Scholar
  8. 8.
    Gunnery S, Ma Y, Mathews MB. (1999). Termination sequence requirements vary among genes transcribed by RNA polymerase III. J Mol Biol 286: 745-757.CrossRefPubMedGoogle Scholar
  9. 9.
    Lee NS, Dohjima T, Bauer G, et al. (2002). Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol 20: 500-505.PubMedGoogle Scholar
  10. 10.
    Lee Y, Ahn C, Han J, et al. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature 425: 415-419.CrossRefPubMedGoogle Scholar
  11. 11.
    Lewis BP, Green RE, Brenner SE. (2003). Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc Natl Acad Sci USA 100: 189-192.CrossRefPubMedGoogle Scholar
  12. 12.
    Lin SL, Ying SY. (2001). D-RNAi (messenger RNA-antisense DNA interference) as a novel defense system against cancer and viral infections. Curr Cancer Drug Targets 1: 241-247.CrossRefPubMedGoogle Scholar
  13. 13.
    Lin SL, Chang D, Wu DY, Ying SY. (2003). A novel RNA splicing-mediated gene silencing mechanism potential for genome evolution. Biochem Biophys Res Commun 310: 754-760.CrossRefPubMedGoogle Scholar
  14. 14.
    Lin SL, Ying SY. (2004a). Novel RNAi therapy - intron-derived microRNA drugs. Drug Des Rev 1: 247-255.Google Scholar
  15. 15.
    Lin SL, Ying SY. (2004b). Combinational therapy for HIV-1 eradication and vaccination. Int J. Oncol 24: 81-88.Google Scholar
  16. 16.
    Lin SL, Chang D, Ying SY (2005). Asymmetry of intronic pre-microRNA structures in functional RISC assembly. Gene 356: 32-38.CrossRefPubMedGoogle Scholar
  17. 17.
    Lin SL, Ying SY. (2006a). Gene silencing in vitro and in vivo using intronic microRNAs. Methods Mol Biol 342: 295-312.Google Scholar
  18. 18.
    Lin SL, Chang SJE, Ying SY. (2006b). Transgene-like animal model using intronic microRNAs. Methods Mol Biol 342: 321-334.Google Scholar
  19. 19.
    Lin SL, Kim H, Ying SY. (2008). Intron-mediated RNA interference and microRNA (miRNA). Front Biosci 13: 2216-2230. CrossRefPubMedGoogle Scholar
  20. 20.
    Miyagishi M, Taira K. (2002). U6 promoter-driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nat Biotechnol 20: 497-500.CrossRefPubMedGoogle Scholar
  21. 21.
    Nott A, Meislin SH, Moore MJ. (2003). A quantitative analysis of intron effects on mamma-lian gene expression. RNA 9: 607-617.CrossRefPubMedGoogle Scholar
  22. 22.
    Paul CP, Good PD, Winer I, Engelke DR. (2002). Effective expression of small interfering RNA in human cells. Nat Biotechnol 20: 505-508.CrossRefPubMedGoogle Scholar
  23. 23.
    Schramm L, Hernandez N. (2002). Recruitment of RNA polymerase III to its target promoters. Genes Dev 16: 2593-2620.CrossRefPubMedGoogle Scholar
  24. 24.
    Sledz, CA, Holko M, de Veer MJ, Silverman RH, Williams BR. (2003). Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 5: 834-839.CrossRefPubMedGoogle Scholar
  25. 25.
    Solano F, Briganti S, Picardo M, Ghanem G. (2006). Hypopigmenting agents: an updated review on biological, chemical and clinical aspects. Pigment Cell Res 19: 550-571.CrossRefPubMedGoogle Scholar
  26. 26.
    Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD. (1998). How cells respond to interferons. Annu Rev Biochem 67: 227-264.CrossRefPubMedGoogle Scholar
  27. 27.
    Tuschl T. (2002). Expanding small RNA interference. Nat Biotechnol 20: 446-448.CrossRefPubMedGoogle Scholar
  28. 28.
    Tang G. (2005). siRNA and miRNA: an insight into RISCs. Trends Biochem Sci 30: 106-114.CrossRefPubMedGoogle Scholar
  29. 29.
    Ying SY, Lin, SL. (2004). Intron-derived microRNAs-fine tuning of gene functions. Gene 342: 25-28.CrossRefPubMedGoogle Scholar
  30. 30.
    Ying SY, Lin SL. (2005). Intronic microRNAs. Biochem Biophys Res Commun 326: 515-520.CrossRefPubMedGoogle Scholar
  31. 31.
    Zhang G, Taneja KL, Singer RH, Green MR. (1994). Localization of pre-mRNA splicing in mammalian nuclei. Nature 372: 809-812.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Shi-Lung Lin
    • 1
  • David T. S. Wu
    • 2
  • Shao-Yao Ying
    • 1
  1. 1.Department of Cell and Neurobiology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Mello Biotech Ltd.TaipeiR.O.C.

Personalised recommendations