The Role of Allelopathy for Harmful Algae Bloom Formation

  • Edna Granéli
  • Paulo S. Salomon
  • Giovana O. Fistarol
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)


Strong evidence has accumulated on the last years that some algal species are able to kill not only their grazers but also other algal species, a process called allelopathy. Killing the nutrient-competing phytoplankton species enable these species to freely utilize limiting resources such as nitrogen and phosphorus. While for some algal species, like e.g. the flagellate Prymnesium sp., the allelochemicals seem to be the same substances as their toxins, for some other algal species they are not. Alexandrium spp. are among the latter case: their internal toxins (such as saxitoxins) are not able to inhibit the growth of other algal species. However, these species by producing other substances than their internal toxins also cause allelopathic effects. Emphasis is placed here on the flagellate species Prymnesium parvum; which is not only able of allelopathy but mixotrophy as well. Mixotrophy, i.e. the capability to ingest bacteria, other algae and even potential grazers, also contributes to the bloom-forming ability of Prymnesium spp. Allelopathy, mixotrophy and grazer deterrence increase dramatically when Prymnesium spp. cells are grown under N or P deficiency, and so does toxicity, but decrease in intensity or cease completely if cells are grown with high amounts of N and P in balanced proportions. Prymnesium filtrates from nutrient deficient cultures have almost the same strong effect on grazers and other plankton cells as Prymnesium cells grown together with their target. It seems that toxin production in Prymnesium spp. works not only as a defense mechanism, but also, by killing competitors, improve the algae competitive ability under conditions of severe nutrient depletion. We can assume thus that a consequence of the increased input of N and P to aquatic ecosystems is provoking an unbalanced nutrient situation for Prymnesium spp., as well as many of the other HAB species producing toxins, to growth but ideal to produce toxins instead.


HABs allelopathy phytoplankton nutrients toxins 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, J. I., Anderson, D., Burford, M., Dyhrman, S., Flynn, K., Glibert, P. M., Granéli, E., Heil, C., Sellner, K., Smayda, T., Zhou, M., 2006, Global ecology and oceanography of harmful algal blooms, harmful algal blooms in eutrophic systems. P. Glibert, ed., GEOHAB report 4, IOC and SCOR, Paris and Baltimore, pp. 74.Google Scholar
  2. Anderson, D. M., 1989. Toxic algal blooms and red tides: a global perspective. In: Okaichi, Anderson, D. M. and Nemoto, T., eds., Red Tides: Biology, Environmental Science and Toxicology. Elsevier. pp. 11-16.Google Scholar
  3. Arzul, G., Seguel, M., Guzman, L., Erard-Le Denn, E., 1999, Comparison of allelopathic properties in three toxic Alexandrium species, J. Exp. Mar. Biol. Ecol. 232: 285-295.CrossRefGoogle Scholar
  4. Bagchi, S. N., and Marwah, J. B., 1994, Production of an algicide from cyanobacterium Fischerella species which inhibits photosynthetic electron transport, Microbios 79: 187-193.Google Scholar
  5. Chauhan, V. S., Marwah, J. B., Bagchi, S. N., 1992, Effect of an antibiotic from Oscillatoria sp. on phytoplankters higher plants and mice, New Phytol. 120: 251-257.CrossRefGoogle Scholar
  6. Christoffersen, K., Lyck, S., Winding, A., 2002, Microbial activity and bacterial community structure during degradation of microcystins, Aquat. Microb. Ecol. 27: 125-136.CrossRefGoogle Scholar
  7. de Figueiredo, D. R., Azeiteiro, U. M., Goncalves, F., Pereira, M. J., 2004, Aphanizomenon flos-aquae grown under different nutrient concentrations and the effects of its exudates on growth of two green algae. Freshen. Environ, Bull. 13: 657-664.Google Scholar
  8. Edvardsen, B., Moy, F., Paasche, E., 1990, Hemolytic activity in extracts of Chrysochromulina polylepis grown at different levels of selenite and phosphate. In: Toxic marine phyto-plankton, E. Granéli, B. Sundstöm, L. Edler, and D. M. Anderson, eds., Elsevier, New York, pp. 284-289.Google Scholar
  9. Einhellig, F. A., 1995, Allelopathy: Current status and future goals. In: Allelopathy: organisms, processes and applications. In: Inderjit, K. M. M. Dakshini, F. A. Einhellig, eds., ACS Symp. Ser. 582: 1-24.Google Scholar
  10. Figueredo, C. C., Giani, A., Bird, D. F., 2007, Does allelopathy contribute to Cylindrospermopsis raciborskii (cyanobacteria) bloom occurrence and geographic expansion?, J. Phycol. 43: 256-265.CrossRefGoogle Scholar
  11. Fistarol, G. O., Legrand, C., Granéli, E., 2003, Allelopathic effect of Prymnesium parvum on a natural plankton community, Mar. Ecol. Prog. Ser. 255: 115-125.CrossRefGoogle Scholar
  12. Fistarol, G. O., Legrand, C., Selander, E., Hummert, C., Stolte, W., Granéli, E., 2004a, Allelopathy in Alexandrium spp.: effect on a natural plankton community and on algal monocultures. Aquat. Microb. Ecol. 35: 45-56.CrossRefGoogle Scholar
  13. Fistarol, G. O., Legrand, C., Rengefors, K., Granéli, E., 2004b, Temporary cyst formation in phytoplankton: a response to allelopathic competitors? Environ. Microbiol. 6: 791-798.CrossRefGoogle Scholar
  14. Fistarol, G. O., Legrand, C., Granéli, E., 2005, Allelopathic effect on a nutrient-limited phytoplankton species, Aquat. Microb. Ecol. 41: 153-161.CrossRefGoogle Scholar
  15. Gleason, F. K., and Paulson, J. L., 1984, Site of action of the natural algicide, cyanobacterin, in the blue-green alga, Synechococcus sp., Arch. Microbiol. 138: 273-277.Google Scholar
  16. Granéli, E., and Flynn, K., 2006, Chemical and physical factors influencing toxin content. In: E. Granéli, and J. Turner, eds., Ecology of harmful algae. Ecological Studies, Springer, Heidelberg, 189: 229-241.CrossRefGoogle Scholar
  17. Granéli, E., and Hansen, P. J., 2006. Allelopathy in harmful algae: A mechanism to compete for resources? In: E. Granéli, and J. Turner, eds., Ecology of harmful algae., Ecological Studies, Springer, Heidelberg, 189: 189-201.CrossRefGoogle Scholar
  18. Granéli, E., and Johansson, N., 2003, Increase in the production of allelopathic substances by Prymnesium parvum cells grown under N- or P-deficient conditions. Harmful Algae 2: 135-145.CrossRefGoogle Scholar
  19. Granéli, E., and Pavia, H., 2006, Allelopathy in marine ecosystems. In: M. J. Reigosa, N. Pedrol, and L. González, eds., Allelopathy: A Physiological Process With Ecological Implications. Springer, The Netherlands, pp. 415-431.Google Scholar
  20. Granéli, E., and Weberg, M., 2008, Harmful algal blooms of allelopathic species: the role of eutrophication, Harmful Algae.Google Scholar
  21. Gross, E. M., 2003, Allelopathy of aquatic autotrophs. Crit. Rev. Plant. Sci. 22: 313-339.CrossRefGoogle Scholar
  22. Gross, E. M., Wolk, C. P., Jüttner, F., 1991, Fischerellin, a new allelochemical from the freshwater cyanobacterium Fischerella muscicola, J. Phycol. 27: 686-692.CrossRefGoogle Scholar
  23. Hagström, J. A., Granéli, E., Maneiro, I., Barreiro, A., Petermann, A., Svensen, C., 2007, Release and degradation of amnesic shellfish poison from decaying Pseudo-nitzschia multiseries in presence of bacteria and organic matter, Harmful Algae 6:175-188.CrossRefGoogle Scholar
  24. Hairston, N. G., Holtmeier, C. L., Lampert, W., Weider, L. J., Post, D. M., Fischer, J. M., Caceres, C. E., Fox, J. A., Gaedke, U., 2001, Natural selection for grazer resistance to toxic cyanobacteria: evolution of phenotypic plasticity? Evolution 55: 2203-2214.CrossRefPubMedGoogle Scholar
  25. Hallegraeff, G. M., 1993, A review of harmful algal blooms and their apparent global increase. Phycologia 32: 79-99.Google Scholar
  26. Hansen, P. J., 2002, Effect of high pH on the growth and survival of marine phytoplankton: implications for species succession. Aquat. Microb. Ecol. 28: 279-288.CrossRefGoogle Scholar
  27. Hansen, E., Ernstsen, A., Eilertsen, H. C., 2004, Isolation and characterisation of a cytotoxic polyunsaturated aldehyde from the marine phytoplankter Phaeocystis pouchetii (Hariot) Lagerheim, Toxicology 199: 207-217.CrossRefPubMedGoogle Scholar
  28. Hinga, K. R., 1992, Co-occurrence of dinoflagellate blooms and high pH in marine enclosures. Mar. Ecol. Prog. Ser. 86:181-187.CrossRefGoogle Scholar
  29. Hirata, K., Takashina, J., Nakagami, H., Ueyama, S., Murakami, K., Kanamori, T., Miyamoto, K., 1996, Growth inhibition of various organisms by a violet pigment, Nostocine A, produced by Nostoc spongiaeforme, Biosci. Biotech. Bioch. 60: 1905-1906.CrossRefGoogle Scholar
  30. Hirata, K., Yoshitomi, S., Dwi, S., Iwabe, O., Mahakhant, A., Polchai, J., Miyamoto, K., 2003, Bioactivities of Nostocine A produced by a freshwater cyanobacterium Nostoc spongiaeforme TISTR 8169, J. Biosci. Bioeng. 95: 512-517.PubMedGoogle Scholar
  31. Huntley, M., Sykes, P., Rohan, S., Marin, V., 1986, Chemically-mediated rejection of dino-flagellate prey by the copepods Calanus pacificus and Paracalanus parvus: mechanism, occurrence and significance. Mar. Ecol. Prog. Ser. 28: 105-120.CrossRefGoogle Scholar
  32. Igarashi, T., Oshima, Y., Murata, M., Yasumoto, T., 1995, Chemical studies on prymnesins isolated from Prymnesium parvum. In: P. Lassus, G. Arzul, E. Erard-Le Denn, P. Gentien, and C. Marcaillou-Le Baut, eds., Harmful marine algal blooms: proceedings of the Sixth International Conference on Toxic Marine Phytoplankton, October 1993, Nantes, France. Lavoisier Publishing, Paris, pp. 303-308.Google Scholar
  33. Igarashi, T., Aritake, S., Yasumoto, T., 1998, Biological activities of Prymnesin-2 isolated from a red tide alga Prymnesium parvum, Nat. Toxins 6: 35-41.CrossRefPubMedGoogle Scholar
  34. Inderjit, S., and Dakshini, K. M. M., 1994, Algal allelopathy, The Botanical Review 60: 182-196.CrossRefGoogle Scholar
  35. Johansson, N., and Graneli, E., 1999a, Cell density, chemical composition and toxicity of Chrysochromulina polylepis (Haptophyta) in relation to different N:P supply ratios. Mar. Biol. 135: 209-217.CrossRefGoogle Scholar
  36. Johansson, N., and Graneli, E., 1999b, Influence of different nutrient conditions on cell density, chemical composition and toxicity of Prymnesium parvum (Haptophyta) in semi-continuous cultures. J. Exp. Mar. Biol. Ecol. 239: 243-258.CrossRefGoogle Scholar
  37. Kearns, K. D., and Hunter, M. D., 2001, Toxin-producing Anabaena flos-aquae induces settling of Chlamydomonas reinhardtii, a competing motile alga, Microb. Ecol. 42: 80-86.PubMedGoogle Scholar
  38. Keating, K. I. 1999, Allelochemistry in plankton communities. In: Inderjit, K. M. M. Dakshini, and C. L. Foy, (eds.) Principles and Practices in Plant Ecology: allelochemicals interactions. CRC Press, London, pp. 165-178.Google Scholar
  39. Keating, K. I., 1977, Allelopathic influence on blue-green bloom sequence in a eutrophic lake. Science 196: 885-887.CrossRefPubMedGoogle Scholar
  40. Kubanek, J., Hicks, M. K., Naar, J., Villareal, T. A., 2005, Does the red tide dinoflagellate Karenia brevis use allelopathy to outcompete other phytoplankton? Limnol. Oceanogr. 50: 883-895.Google Scholar
  41. Larsen, A., and Bryant, S., 1998, Growth and toxicity in Prymnesium parvum and Prymnesium patelliferum (Haptophyta) in response to changes in salinity, light and temperature, Sarsia 83: 409-418.Google Scholar
  42. Legrand, C., Rengefors, K., Fistarol, G. O., Granéli, E., 2003, Allelopathy in phytoplankton - biochemical, ecological and evolutionary aspects. Phycologia 42: 406-419.CrossRefGoogle Scholar
  43. Lewis, W. M. Jr., 1986, Evolutionary interpretation of allelochemical interactions in phytoplankton algae. The American Naturalist 127: 184-194.CrossRefGoogle Scholar
  44. Mulderij, G., Van Donk, E., Roelofs, G. M., 2003. Differential sensitivity of green algae to allelopathic substances from Chara. Hydrobiologia, 491: 261-271CrossRefGoogle Scholar
  45. Murphy, T. P., Lean, D. R. S., Nalewajko, C., 1976, Blue-green algae: their excretion of iron-selective chelators enables them to dominate other algae, Science 192: 900-902.CrossRefPubMedGoogle Scholar
  46. Myklestad, S. M., Ramlo, B., Hestmann, S., 1995, Demonstration of strong interaction between the flagellate Chrysochromulina polylepis (Prymnesiophyceae) and a marine diatom, In: P. Lassus, G. Arzul, E. Erard-Le Denn, P. Gentien, C. Marcaillou-Le Baut, eds., Harmful marine algal blooms. Lavoisier Pub., Paris, pp. 633-638.Google Scholar
  47. Parnas, I., Reich, K., Bergmann, F., 1962. Photoinactivation of ichthyotoxin from axenic cultures of Prymnesium parvum Carter. Appl. Microbiol. 10: 237-239.PubMedGoogle Scholar
  48. Pegler, K., and Kempe, S., 1988, The carbonate system of the North Sea: determination of alkalinity and TCO2 and calculation of PCO2 and Slcal (spring 1986). Mitt. Geol.-Paleont. Inst. Univ. Hamburg, 65: 35-87.Google Scholar
  49. Pratt, D. M., 1966, Competition between Skeletonema costatum and Olisthodiscus luteus in Narragansett Bay and in culture. Limnol. Oceanogr. 11: 447-455.CrossRefGoogle Scholar
  50. Ray, S., and Bagchi, S. N., 2001, Nutrients and pH regulate algicide accumulation in cultures of the cyanobacterium Oscillatoria laetevirens. New Phytol. 149: 455-460.CrossRefGoogle Scholar
  51. Reguera, B., and Oshima, Y., 1990, Responses of Gyrodinium catenatum to increasing levels of nitrate: growth patterns and toxicity, In: E. Granéli, B. Sundström, L. Edler, and D. M. Anderson, eds., Toxic Marine Phytoplankton, Elsevier, New York, pp. 316-319.Google Scholar
  52. Reich, K., and Parnas, I., 1962, Effect of illumination on ichthyotoxin in and axenic culture of Prymnesium parvum Carter. J. Protozool. 9: 38-40.Google Scholar
  53. Reigosa, M. J., Sánchez-Moreiras, A., González, L., 1999, Ecophysiological approach in allelopathy. Critical Reviews in Plant Science 18: 577-608.CrossRefGoogle Scholar
  54. Rengefors, K., and Legrand, C., 2001, Toxicity in Peridinium aciculiferum - an adaptative strategy to outcompete other winter phytoplankton? Limnol. Oceanogr. 46: 1990-1997.CrossRefGoogle Scholar
  55. Rice, E. L., 1984, Allelopathy, 2nd ed. Academic Press, Orlando, Florida, pp. 423.Google Scholar
  56. Rizvi, S. J. H., Haque, H., Singh, V. K., Rizvi, V., 1992, A discipline called allelopathy, In: S. J. H. Rizvi, and V. Rizvi, V., eds., Allelopathy: basic and applied aspects. Chapman and Hall, London, pp. 1-19.Google Scholar
  57. Schagerl, M., Unterrieder, I., Angeler, D. G., 2002, Allelopathy among cyanoprokaryota and other algae originating from Lake Neusiedlersee (Austria), Int. Rev. Hydrobiol. 87: 365-374.CrossRefGoogle Scholar
  58. Schmidt, L. E., and Hansen, P. J., 2001, Allelopathy in the prymnesiophyte Chrysochromulina polylepis: effect of cell concentration, growth phase and pH. Mar. Ecol. Prog. Ser. 216: 67-81.CrossRefGoogle Scholar
  59. Skovgaard, A., and Hansen, P. J., 2003, Food uptake in the harmful Prymnesium parvum mediated by excreted toxins. Limnol. Oceanogr. 48: 1161-1166.CrossRefGoogle Scholar
  60. Skovgaard, A., Legrand, C., Hansen, P. J., Granéli, E., 2003, Effects of nutrient limitation on food uptake in the toxic haptophyte Prymnesium parvum. Aquat. Microb. Ecol. 31: 259-265.CrossRefGoogle Scholar
  61. Smayda, T. J., 1990, Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic. In: E. Granéli, B. Sundström, L. Edler, and D. M. Anderson, eds., Toxic Marine Phytoplankton, Elsevier, New York, pp. 29-40.Google Scholar
  62. Smayda, T. J., 1997, Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol. Oceanogr. 42: 1137-1153.CrossRefGoogle Scholar
  63. Sugg, L. M., and VanDolah, F. M., 1999, No evidence for an allelopathic role of okadaic acid among ciguatera-associated dinoflagellates. J. Phycol. 35: 93-103.CrossRefGoogle Scholar
  64. Sukenik, A., Eshkol, R., Livne, A., Hadas, O., Rom, M., Tchernov, D., Vardi, A., Kaplan, A., 2002, Inhibition of growth and photosynthesis of the dinoflagellate Peridinium gatunense by Microcystis sp. (cyanobacteria): A novel allelopathic mechanism, Limnol. Oceanogr. 47: 1656-1663.CrossRefGoogle Scholar
  65. Suikkanen, S., Engström-Öst, J., Jokela, J., Sivonen, K., Viitasalo, M., 2006, Allelopathy of Baltic Sea cyanobacteria: no evidence for the role of Nodularin. J. Plankton. Res. 28: 543-550.CrossRefGoogle Scholar
  66. Suikkanen, S., Fistarol, G. O., Granéli, E., 2004, Allelopathic effects of the Baltic cyanobac-teria Nodularia spumigena, Aphanizomenon flos-aquae and Anabaena lemmermannii on algal monocultures. J. Exp. Mar. Biol. Ecol. 308: 85-101.CrossRefGoogle Scholar
  67. Suikkanen, S., Fistarol, G. O., Granéli, E., 2005, Effects of cyanobacterial allelochemicals on a natural plankton community. Mar. Ecol. Prog. Ser. 287: 1-9.CrossRefGoogle Scholar
  68. Tang, C. S., Cai, W. F., Kohl, K., Nishimoto, R. K., 1995, Plant stress and allelopathy. Allelopathy, American Chemical Societ 582: 142-157.Google Scholar
  69. Tillmann, U., 2003, Kill and eat your predator: a winning strategy of the planktonic flagellate Prymnesium parvum, Aquat. Microb. Ecol. 32: 73-84.CrossRefGoogle Scholar
  70. Tillmann, U., and John, U., 2002, Toxic effects of Alexandrium spp. on heterotrophic dinoflagellates: an allelochemical defence mechanism independent of PSP-toxin content. Mar. Ecol. Prog. Ser. 230: 47-58.CrossRefGoogle Scholar
  71. Tillmann, U., John, U., Cembella, A., 2007, On the allelochemical potency of the marine dinoflagellate Alexandrium ostenfeldii against heterotrophic and autotrophic protists. J. Plankton. Res. 29: 527-543.CrossRefGoogle Scholar
  72. Twist, H., and Cood, G. A., 1997, Degradation of the cyanobacterial hepatotoxin, nodularin, under light and dark conditions. FEMS Microbiology Letters 151: 83-88.CrossRefPubMedGoogle Scholar
  73. Uchida, T., Toda, S., Matsuyama, Y., Yamaguchi, M., Kotani, Y., Honjo, T., 1999, Interactions between the red tide dinoflagellates Heterocapsa circularisquama and Gimnodinium mikimotoi in laboratory culture, J. Exp. Mar. Biol. Ecol. 241: 285-299.CrossRefGoogle Scholar
  74. Van Dolah, F. M., 2000, Marine algal toxins: origins, health effects, and their increased occurrence. Environ. Health Persp. 108: 133-141.CrossRefGoogle Scholar
  75. van Rijssel, M., Alderkamp, A. -C., Nejstgaard, J. C., Sazhin, A. F., Verity, P. G., 2007, Hae-molytic activity of live Phaeocystis pouchetii during mesocosm blooms. Biogeochemistry 83: 189-200.CrossRefGoogle Scholar
  76. Vardi, A., Schatz, D., Beeri, K., Motro, U., Sukenik, A., Levine, A., Kaplan, A., 2002, Dinoflagellate-cyanobacteria communication may determine the composition of phytoplan-kton assemblege in a mesotrophic lake. Current Biol. 12: 1767-1772.CrossRefGoogle Scholar
  77. Wang, Y., Yu, Z., Song, X., Zhang, S., 2006, Interactions between the bloom-forming dinoflagellates Prorocentrum donghaiense and Alexandrium tamarense in laboratory cultures, J. Sea Res. 56: 17-26.CrossRefGoogle Scholar
  78. Willis, R. J., 1985, The hystorical bases of the concept of allelopathy. J. Hist. Biol. 18: 71-102.CrossRefGoogle Scholar
  79. Windust, A. J., Quilliam, M. A., Wright, J. L. C., McLachlan, J. L., 1997, Comparative toxicity of diarrhetic shellfish poisons, okadaic acid, okadaic acid diol-ester and dinophysistoxin-4, to the diatom Thalassiosira weissflogii. Toxicon 35: 1591-1603.CrossRefPubMedGoogle Scholar
  80. Wolfe, G. V., 2000, The chemical defense ecology of marine unicellular plankton: constraints, mechanisms, and impacts. Biol. Bull. 198: 225-244.CrossRefPubMedGoogle Scholar
  81. Yamasaki, Y., Nagasoe, S., Matsubara, T., Shikata, T., Shimasaki, Y., Oshima, Y., Honjo, T., 2007, Allelopathic interactions between the bacillariophyte Skeletonema costatum and and the raphidophyte Heterosigma akashiwo, Mar. Ecol. Prog. Ser. 339: 83-92.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  • Edna Granéli
    • 1
  • Paulo S. Salomon
    • 1
  • Giovana O. Fistarol
    • 2
  1. 1.Dept. of Marine SciencesUniversity of KalmarKalmarSweden
  2. 2.Dept. of Agriculture EngineeringUFSCFlorianópolisBrazil

Personalised recommendations