Skip to main content

Oddities and Curiosities in the Algal World

  • Conference paper
Algal Toxins: Nature, Occurrence, Effect and Detection

Abstract

The term algae refers to a polyphyletic, non-cohesive and artificial assemblage, of O2-evolving, photosynthetic organisms. The profound diversity of size, shape, habitat, metabolic traits and growth strategies makes this heterogeneous assemblage of both prokaryotic and eukaryotic species an almost unlimited source of curious and unusual features. Algae display an incredible adaptability to most environments, and provide an excellent system for testing hypotheses concerning the evolution of ecological tolerance. In fact, they are not limited to temperate waters, but can survive at very low depth and very low irradiance, and thrive beneath polar ice sheets. Upon adaptation to life on land, algae have colonized such surprising places, as catacombs, tree trunks, hot springs, and can also resist desiccation in the desert regions of the world. Moreover, relations between them and other organisms, which include competition within and between species for space, light, nutrient or any limiting source, are based on a variety of associations, which includes epiphytism, parasitism, and symbiosis. Algae can share their life with animals, growing on sloth hair, inside the jelly capsule of amphibian eggs, upon the carapaces of turtles or shells of mollusks, camouflaging the dorsal scute of harvestmen. They can also light up the sea at night, and cause infections in animals and humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aalbaek, B., Jensen, H.E., and Huda, A.. 1998. Identification of Prototheca from bovine mastitis in Denmark. APMIS 106: 483-488.

    PubMed  CAS  Google Scholar 

  • Abrahams, M.V., and Townsend L.D. 1993. Bioluminescence in dinoflagellates: a test of the burglar alarm hypothesis. Ecology, 74: 258-260.

    Google Scholar 

  • Aiello, A. 1985. Sloth hair: unanswered questions. In: The Evolution and Ecology of Armadillos, Sloths and Vermilinguas. pp. 213-218. Montgomery G.G. Editor. Smithsonian Institution Press, Washington and London.

    Google Scholar 

  • Aitchison, C.W. 2001. The effect of snow cover on small animals. In: Snow Ecology. pp. 229-265. Cambridge University Press: Cambridge.

    Google Scholar 

  • Albertano, P., Barsanti, L., Passarelli, V., and Gualtieri, P. 2001. A complex photoreceptive structure in the cyanobacterium Leptolyngbya sp. Micron. 31: 27-34.

    Google Scholar 

  • Albertano, P., Bruno, L., D’Ottavi, D., Moscone, D., and Palleschi, G. 2000. Effect of photosynthesis on pH variation in cyanobacterial biofilms from Roman catacombs. J. Appl. Phycol. 12: 379-384.

    Google Scholar 

  • Anbar A.D., and Knoll A.H. 2002. Protezoic Ocean Chemistry and Evolution: a bioorganic bridge? Science, 297: 1137-1142.

    PubMed  CAS  Google Scholar 

  • Anderson, D.C., and Rushforth R.S. 1977. The cryptogramic flora of desert soil crusts in southern Utah, USA. Nova Hedwigia, 28: 691-729.

    Google Scholar 

  • Archibald, J.M. 2006. Genome complexity in a lean, mean photosynthetic machine. Proc. Natl. Acad. Sci. USA, 103: 11433-11434.

    PubMed  CAS  Google Scholar 

  • Arrigo, K.R., Dieckmann, G.S., Gosselin, M., Robinson, D.H., Fritsen, C.H., and Sullivan, C. W. 1995. High resolution study of the platelet ice ecosystem in McMurdo Sound, Antarctica: biomass, nutrient, and production profiles within a dense microalgal bloom. Mar. Ecol. Prog. Ser. 127: 255-68.

    Google Scholar 

  • Arrigo, K.R., Robinson, D.H., and Sullivan, C.W. 1993. Vertical profiles of the bio-optical and photophysiological properties of sea ice microalgae within the platelet layer of McMurdo Sound, Antarctica. J. Phycol. 98: 173-85.

    Google Scholar 

  • Arrigo, K.R., Sullivan, C.W., and Kremer, J.N. 1991. A bio-optical model of Antarctic sea ice. J. Geophys. Res. 96: 10581-92.

    Google Scholar 

  • Baker, H. 1753. On some luminous water insects. In: Employment for the Microscope. pp. 399. 3rd edition, 1785, London. (as cited in Harvey, 1957).

    Google Scholar 

  • Barger, N.N., Herrick, J.E., Van Zee, J., and Belnap, J. 2006. Impacts of biological crust disturbance and composition on C and N loss from water erosion. Biogeochemistry 77: 247-263.

    CAS  Google Scholar 

  • Barsanti, L., and Gualtieri, P. 2006. Algae: Anatomy, Biochemistry and Biothechnology. Taylor and Francis, Boca Raton, Florida, USA.

    Google Scholar 

  • Barsanti, L., Evangelista, V., Frassanito, A.M., Vesentini, N., Passarelli, V., and Gualtieri, P. 2007. Absorption Microspectroscopy, Theory and application in the case of the photosynthetic compartment. Micron, 38: 197-213.

    PubMed  CAS  Google Scholar 

  • Batchelder, H.P., Swift, E., and Van Keuren, J.R., 1992. Diel patterns of planctonic bio-luminescence in the northern Sargasso Sea. Mar. Biol. 113: 329-339.

    Google Scholar 

  • Belnap, J. 1993. Recovery rates of cryptobiotic crusts: inoculant use and assessment methods. Great Basin Nat. 53: 89-95.

    Google Scholar 

  • Belnap, J., and Gardner, J.S. 1993. Soil microstructure in the soil of the Colorado plateau: the role of the cyanobacterium Microcoleus vaginatus. Great Basin Nat. 53: 40-47.

    Google Scholar 

  • Belnap, J., and Gillette, D.A. 1997. Disturbance of biological soil crusts: impacts on potential wind erodibility of sandy desert soils in southeastern Utah. Land Degradat. Develop. 8: 355-362.

    Google Scholar 

  • Belnap, J., and Gillette D.A. 1998. Vulnerability of desert biological soil crusts to wind erosion: the influences of crust development, soil texture, and disturbance. J. Arid Environ. 39: 133-142.

    Google Scholar 

  • Bidigare, R.R., Ondrusek, M.E., Kennicutt II, M.C., Iturriaga, R., Harvey, H.R., Hoham, R.W., and Macko, S.A. 1993. Evidence for a photoprotective function for secondary carotenoids of snow algae. J. Phycol., 29: 427-434.

    CAS  Google Scholar 

  • Booth, W.E. 1941. Algae as pioneers in plant succession and their importance in erosion control. Ecology 22: 22-29.

    Google Scholar 

  • Borza, T., Popescu, C.E., and Lee, R.W. 2005. Multiple metabolic roles for the non-photosynthetic plastid of the green alga Prototheca wickerhamii. Eukaryotic Cell 4: 253-261.

    PubMed  CAS  Google Scholar 

  • Breder, R.B. 1927. The courtship of the spotted salamander. Zool. Soc. Bull. N.Y. 30: 50-56.

    Google Scholar 

  • Brock, T.D. 1967. Micro-organisms adapted to high temperature. Nature, 214: 882-885.

    PubMed  CAS  Google Scholar 

  • Brock, T.D. 1978. Thermophilic microorganism and life at high temperatures. Springer Verlag, NY.

    Google Scholar 

  • Brotherson, J.D., and Rushforth, S.R. 1983. Influence of cryptogamic crusts on moisture re-lationships of soil in Navajo National Monument, Arizona. Great Basin Nat. 43: 73-78.

    Google Scholar 

  • Brown, C.W., and Yoder, J.A. 1994 Coccolithophorid blooms in the global ocean. J. Geophys. Res., 99: 7467-7482.

    CAS  Google Scholar 

  • Bunt, J.S. 1968. Some characteristics of microalgae isolated from Antarctic sea ice. Antarct. Res. Ser. 11: 1-14.

    Google Scholar 

  • Bunt, J.S., and Lee C.C. 1970. Seasonal primary production in Antarctic sea ice. J. Mar. Res. 28: 304-20.

    Google Scholar 

  • Burkenroad, M.D. 1943. Luminescence burglar alarm hypothesis. J. Mar. Res. 5: 161-164.

    Google Scholar 

  • Carmichael, W.W. 2001. Health effects of toxin-producing cyanobacteria: the Cyano HABs. Human Ecol. Risk Assess 7: 1393-1407.

    Google Scholar 

  • Castenholz, R.W. 1996. Endemism and biodiversity of termophilic cyanobacteria. Nova Hedvigia, 112: 33-47.

    Google Scholar 

  • Castenholz, R.W. 1999. Thermophilic blue-green algae and thermal environment. Bacteriol. Rev. 33: 476-504.

    Google Scholar 

  • Cinilia, C., Yoon, H.S., Pollio, A., Pinto, G., and Bhattacharya, D. 2004. Hidden biodiver-sity of the extremophilic Cyanidiales red algae. Mol. Ecol. 13: 1827-1838.

    Google Scholar 

  • Colombo-Pallotta, M.F., García-Mendoza, E., and Ladah, L. 2006. Photosynthetic perfor-mance, light absorption and pigment composition of Macrocystis pyrifera (Laminariales, Phaeophyceae) blades from different depths. J. Phycol. 42: 1225-1234.

    CAS  Google Scholar 

  • Costa, E.O., Carciofi, A.C., Melville, P.A., Prada, M.S., and Schalch, U. 1996. Prototheca sp. outbreak of bovine mastitis. Zentralbl. Veterinarmed. B 43: 321-324.

    PubMed  CAS  Google Scholar 

  • Cota, G. F. 1985. Photoadaptation of High Arctic ice algae. Nature (Lond.) 315: 219-22.

    CAS  Google Scholar 

  • Courties, C., Vaquer, A., Troussellier, M., and Lautier, J. 1994. Smallest eukaryotic orga-nism. Nature 370: 255

    Google Scholar 

  • Chuck, A., Tyrrell, T., Totterdell, I.J., and Holligan, P.M. 2005. The oceanic response to carbon emissions over the next century: investigation using three ocean carbon cycle models. Tellus 57B: 70-86.

    Google Scholar 

  • Cuhna, L.T., Pugine, S.P., Valle, C.R., Ribeiro, A.R., Costa, E.J.X., and De Melo, M.P. 2006. Effect of Prototheca zopfii on neutrophil function from bovine milk. Mycopathologia 162: 421-426.

    Google Scholar 

  • Cussatlegras, A.S., and Le Gal P. 2004. Bioluminescence of the dinoflagellate Pyrocystis noctiluca induced by laminar and turbulent couvette flow. J. Exp. Marin Biol Ecol. 310: 227-246.

    Google Scholar 

  • Dayton, P.K., Rebilliard, G.A., and DeVries, A.L. 1969. Anchor ice formation in McMurdo Sound, Antarctica, and its biological effects. Science 163: 273-4.

    PubMed  CAS  Google Scholar 

  • Dayton, P.K. 1985. Ecology of kelp community. Annu. Rev. Ecol. Syst. 16: 215-245.

    Google Scholar 

  • De Quatrefages, A. 1850. Observations sur les noctiluques. Ann. Sci. Nat. Zool. 14: 236-281.

    Google Scholar 

  • Dean, T.A. 1985. The temporal and spatial distribution of underwater quantum irradiation in a Southern California kelp forest. Estuarine Coastal Shelf Science 21: 835-844.

    Google Scholar 

  • DeNicola, D.M. 1996. Periphyton responses to temperature at different ecological levels. In: Algal Ecology: freshwater bentic ecosystems. pp. 149-181. Stevenson, R.G., Bothwell, M.L. and Lowe, R.L., Eds., Academic Press Sand Diego, Ca, USA.

    Google Scholar 

  • Derelle, E., Ferraz, C., Rombauts, S., Rouzé, P., Worden, A.Z., Robbens, S., Partensky, F., Degroeve, S., Echeynié, S., Cooke, R., Saeys, Y., Wuyts, J., Jabbari, K., Bowler, C., Panaud, O., Piégu, B., Ball, S.G., Ral, J.P., Bouget, F.Y., Piganeau, G., De Baets, B., Picard, A., Delseny, M., Delaille, J., Van de Peer, Y., and Moreau, H. 2006. Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features Proc. Natl. Acad. Sci. USA 103: 11647-11652.

    PubMed  CAS  Google Scholar 

  • Desjardins, M., and Morse, D. 1993. The polypeptide components of scintillons, the bio-luminescence organelles of the dinoflagellates Gonyaulax polyedra. Biochem. Cell Biol. 71: 176-82.

    PubMed  CAS  Google Scholar 

  • Dieckmann, G.S., Arrigo, K.R., and Sullivan, C.W. 1992. A high resolution sampler for nutrient and chlorophyll a profiles in the sea ice platelet layer and underlying water column belowfast ice in polar oceans: preliminary results. Mar. Ecol. Prog. Ser. 80: 291-300.

    Google Scholar 

  • Dietrich, F.S., Voegeli, S., Brachat, S., Lerch, A., Gates, K., Steiner, S., Mohr, C., Pohlmann, R., Luedi, P., Choi, S., Wing, R.A., Flavier, A., Gaffney, T.D., and Philippsen, P. 2004. The Ashbya gossypii Genome as a Tool for Mapping the Ancient Saccharomyces cerevisiae Genome. Science 304: 304-307.

    PubMed  CAS  Google Scholar 

  • Di Persio, J.R. 2001. Prototheca and Protothecosis. Clin. Microbiol. Newslett. 23: 115-120.

    Google Scholar 

  • Dong G.R., Li C.Z., Jin T., Gao S.Y., and Wu, D. 1987. Some results on soil wind-tunnel imitating experiment. Chinese Science Bulletin 32: 297-301.

    Google Scholar 

  • Duellman, W.E., and Trueb, L. 1994. Biology of Amphibians. The John Hopkin University Press, Maryland, USA.

    Google Scholar 

  • Duelmann, W.E., and Trueb, L. 1986. Eggs and development. In: Biology of Amphibians, pp. 109-140. McGraw-Hill Book Co. N.Y.

    Google Scholar 

  • Edwards, M.R., Hauer, C.A., Stack, R.F., Eisele L.E., and MacColl, R. 1997. Thermopilic C-phycocyanin: effect of temperature, monomer stability and structure. Biochim. Biophys. Acta 1321: 157-164.

    CAS  Google Scholar 

  • Edwards, M.R., MacColl, R., Williams, E.C., and Eisele, L.E. 1996. Some physical properties of an unusual C-phycocyanin isolated from a photosynthetic thermophile. Biochim. Biophys. Acta 1276: 64-70.

    Google Scholar 

  • Eisele, L.E., Bakhru, S.H., Liu, X., MacColl R., and Edwards, M.R. 2000. Studies on C-phycocianin from Cyanidium caldarium, a eukaryote at the extremes of habitat. Biochim. Biophys. Acta 1456: 99-107.

    PubMed  CAS  Google Scholar 

  • Ernst, C.H., and Norris, J.M. 1978. Observations on the algal genus Basicladia and the red-bellied turtle, Chrysemys rubriventris. Estuaries. 1: 54-57.

    Google Scholar 

  • Esaias, W.E., and Curl, H.C. 1972. Effects of dinoflagellate luminescence on copepod ingestion rates. Limnol. Oceanogr. 17: 901-906.

    Google Scholar 

  • Evans, R.D., and Johansen, J.R. 1999. Microbiotic crusts and ecosystem processes. Crit. Rev. Plant Sci. 18: 183-225.

    Google Scholar 

  • Fasham, M.J.R. 2003. Ocean Biogeochemistry. Springer-Verlag, Berlin.

    Google Scholar 

  • Fletcher, J.E., and Martin, W.P. 1948. Some effects of algae and moulds in the rain crust of desert soils. Ecology 29: 95-100.

    Google Scholar 

  • Fogel, M., and Hastings, J.W. 1972. Bioluminescence: mechanism and mode of control of scintillon activity. Proc. Natl. Acad. Sci. U.S.A. 69: 690-693.

    PubMed  CAS  Google Scholar 

  • Fogg, G.E. 1969. Survival of algae under adverse conditions. Symposia for the Society of Experimental Biology. 23: 123-142.

    CAS  Google Scholar 

  • Freidenburg, L.K., and Skelly, D.K. 2004. Microgeographical variation in thermal reference by an amphibian. Ecol. Lett. 7: 369-373.

    Google Scholar 

  • Fritz, L., Morse, D., and Hastings, J.W. 1990. The circadian bioluminescence rhythm of Gonyaulax is related to daily variations in the number of light-emitting organelles. J. Cell. Sci. 95: 321-328.

    PubMed  Google Scholar 

  • Fukushima, H., Toratani, M., and Saitoh, S. 2000. Spectral reflectance of coccolithophore blooming in the Bering sea: comparison of ship-measurements and sea-wide field-of-view scanner observations. In: Proceedings of International Symposium on Remote Sensing. pp. 263-270. Corean Society of Remote Sensing.

    Google Scholar 

  • Gabric A., Gregg W., Najjar R., Erickson D., and Matrai, P. 2001. Modeling the bio-geochemical cycle of dimethylsulfide in the upper ocean: a review. Chemosphere -Global Change Science. 3: 377-392.

    CAS  Google Scholar 

  • Gattuso, J.-P., Gentili, B., Duarte, C.M., Kleypas, J.A., Middelburg, J.J., and Antoine, D. 2006. Light availability in the coastal ocean: impact on the distribution of benthic photosynthetic organisms and contribution to primary production. Biogeoscience 3: 489-513.

    Article  Google Scholar 

  • Gatz, A.J. 1973. Algal entry into the eggs of Ambystoma maculatum. J. Herpetol. 7: 137-138.

    Google Scholar 

  • Gerard, V. 1982. Growth and utilization of internal nitrogen reserves by the giant kelp Macrocystis pyrifera in a low-nitrogen ambient. Mar. Biol. 66: 27-35.

    CAS  Google Scholar 

  • Giese, A.C. 1973. Cell Physiology, 4th ed. W.B. Saunders Co., Philadelphia, USA.

    Google Scholar 

  • Gilbert, P.W. 1942. Observations on the eggs of Ambystoma maculatum with especial reference to the green algae found within the egg envelopes. Ecology 23: 215-227.

    Google Scholar 

  • Gilbert, P.W. 1944. The alga-egg relationship in Ambystoma maculatum, a case of symbiosis. Ecology 25: 366-369.

    Google Scholar 

  • Gillette, D.A., and Dobrowolski, J.P. 1993. Soil crust formation by dust deposition at Shaartuz, Tadahik, S.S.K. Atmosphere Environment 27A: 2519-2525.

    CAS  Google Scholar 

  • Gilmore, D.P., Da Costa, C.P., and Duarte, D.P.F. 2001. Sloth biology: an update on their physiological ecology, behavior and role as vectors of arthropods and arboviruses. Braz. J. Med. Biol. Res. 34: 9-25

    PubMed  CAS  Google Scholar 

  • Giordano, M., Beardall, J., and Raven, J.A. 2005. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation and evolution. Annual Rev. Plant Biol. 56: 99-131.

    CAS  Google Scholar 

  • Goodman, D. 1971. Ecological Investigations of ice worms on Casement Glacier, South-eastern Alaska. The Ohio State University Research Foundation, Institute of polar studies report No. 39: 59.

    Google Scholar 

  • Grossi, S.M., Kottmeier, S.T., Moe, R.L., Taylor, G.T., and Sullivan, C.W. 1987. Sea ice microbial communities. VI. Growth and primary production in bottom ice under graded snow cover. Mar. Ecol. Prog. Ser. 35: 153-64.

    Google Scholar 

  • Guillou, L., Eikrem, W., Chrétiennot-Dinet, M. J., Le Gall, F., Massana, R., Romari, K., Pedrós-Alió, C., and Vaulot, D. 2004. Diversity of Picoplanktonic Prasinophytes Assessed by Direct Nuclear SSU rDNA Sequencing of Environmental Samples and Novel Isolates Retrieved from Oceanic and Coastal Marine Ecosystems. Protist 155: 193-214.

    PubMed  CAS  Google Scholar 

  • Haag, A.L. 2007. Algae bloom again. Nature 447: 520-521.

    PubMed  CAS  Google Scholar 

  • Hanisak, M.D., and Blair, S.M. 1988. The deep-water macroalgal community of the East Florida continental shelf (USA). Helgol. Meeresunt. 42: 133-63.

    Google Scholar 

  • Harrold, C., and Reed D. 1985. Food availability, sea urchin grazing, and kelp forest com-munity structure. Ecol. 66: 1160-1169.

    Google Scholar 

  • Harvey, E.N. 1952. Bioluminescence. Academic Press, New York.

    Google Scholar 

  • Harvey, E.N. 1957. A history of luminescence from the earliest times until 1900. American Philosophical Society, Philadelphia.

    Google Scholar 

  • Hasting, J.W. 1978. Bacterial and dinoflagellates luminescent system. In: Bioluminescence in Action. pp. 129-170. Herring, P.J. Ed. Academic Press Inc., London.

    Google Scholar 

  • Hastings, J.W., and Morin, J.G. 1991. Bioluminescence. In: Neural and Integrative Animal Physiology. pp. 131-170. Prosser, C.L. Ed. Wiley-Interscience, NY.

    Google Scholar 

  • Hay, M.E., Parker, J.D., Burkepile, D.E., Caudill, C.C., Wilson, A.E., Hallinan, Z.P., and Cheque, A.D. 2004. Mutualism and aquatic community structure: the enemy of my enemy is my friend. Ann. Rev. Ecol. Sistem. 35: 175-197.

    Google Scholar 

  • Heil, C.A., Glibert, P.M., and Fan, C. 2005. Prorocentrum minimum (Pavillard) Schiller. A review of a harmul algal bloom species of growing worldwide importance. Harmul Algae, 4: 449-470.

    CAS  Google Scholar 

  • Hepburn, C.D., and Hurd, C.L. 2005. Conditional mutualism between the giant kelp Macrocystis pyrifera and colonial epifauna. Mar. Ecol. Prog. Ser. 302: 37-48.

    Google Scholar 

  • Hickman, G.D., Staples, R.F., and Lynch, R.V. 1980. Bioluminescence of the World’s Oceans: technical assessment. Applied Science Technology Report, ASTR-R-080880.

    Google Scholar 

  • Hodges, R.T., Holland, J.T.S., Neilson, F.J.A., and Wallace, N.M., 1985. Prototheca zopfii mastitis in a herd of dairy cows. N. Z. Vet. J. 33: 108-111.

    PubMed  CAS  Google Scholar 

  • Hoham, R.W., and Blinn, D.W. 1979. Distribution of cryophilic algae in an arid region, the American Southwest. Phycologia. 18: 133-145.

    Google Scholar 

  • Hu, C., Liu, Y., Song, L., and Zhang, D. 2002. Effect of desert soil algae on the stabilization of fine sands. J. Appl. Phycol. 14: 281-292.

    CAS  Google Scholar 

  • Hu, C., Zhang, D., Huang, Z., and Liu, Y. 2003. The vertical microdistribution of cyano-bacteria and green algae within desert crusts and the development of the algal crusts. Plant Soil 257: 97-111.

    CAS  Google Scholar 

  • Hu, M.C., Liu, Y.Z., Wu, L., Yang, Z.T., and Wu, D. 1991. A experimental study in wind Tunnel on wind erosion of soil in Korqin Sandy Land. Chinese J. Desert Research 11: 22-29.

    Google Scholar 

  • Iacoviello, V., deGirolami, P., Lucarini, J., Sutker, K., Williams, M., and Wanke, C. 1002. Protothecosis complicating prolonged endotracheal intubation: case report and literature review. Clin. Infect. Dis. 15: 959-967.

    Google Scholar 

  • Iida, T., Saitoh, S.I., Miyamura, T., Toratani, M., Fukushima, H., and Shiga, N. 2002. Tem-poral and spatial variability of coccolitophore blooms in the eastern Bering sea, 1998-2001. Prog. Oceanogr. 55: 165-175.

    Google Scholar 

  • Ito, K., Ikebe, M., Kashiyama, T., Mogami, T., Kon, T., and Yamamoto, K. 2007. Kinetic mechanism of the fastest motor protein, Chara myosin. J. Biol. Chem. 282: 19534-19545.

    CAS  Google Scholar 

  • Ito, K., Kashiyama, T., Shimada, K., Yamaguchi, A., Awata, J., Hachikubo, Y., Manstein, D.J., and Yamamoto, K. 2003. Recombinant motor domain constructs of Chara corallina myosin display fast motility and high ATPase activity. Biochem. Biophys. Res. Commun. 312: 958-964.

    PubMed  CAS  Google Scholar 

  • Janosi, S., Ratz, F., Szigeti, G., Kulcsar, M., Kerenyi, J., Lauko, T., Katona, F., and Huszenicza, G., 2001. Review of the microbiological, pathological, and clinical aspects of bovine mastitis caused by the alga Prototheca zopfii. Vet. Q. 23: 58-61.

    CAS  Google Scholar 

  • Johansen, J.R. 1993. Cryptogamic crusts of semiarid and arid lands of North America. J. Phycol. 29: 140-147.

    Google Scholar 

  • Johnson, C.H., and Hastings, J.W. 1986. The elusive mechanism of the circadian clock. Am. Sci. 74: 29-36.

    Google Scholar 

  • Jordan, R.W., and Chamberlain A.H.L. 1997. Biodiversity among haptophyte algae. Biodivers. Conservat. 6: 131-152.

    Google Scholar 

  • Joshi, K., Gavin, J., and Wheeler, E. 1975. The ultrastructure of Prototheca wickerhamii. Mycopathologia 56: 9-13.

    PubMed  CAS  Google Scholar 

  • Kachar, B., and Reese, T.S. 1988. The mechanism of cytoplasmic streaming in chara-cean algal cells: sliding of endoplasmic reticulum along actin filaments. J. Cell Biol. 106: 1545-1552

    PubMed  CAS  Google Scholar 

  • Kamitsubo, E. 1966. Motile protoplasmic fibrils in cells of Characeae. II. Linear fibrillar structure and its bearing on protoplasmic streaming. Proc. Japan Acad. 42: 640-643.

    Google Scholar 

  • Kashiyama, T., Kimura, N., Mimura, T., and Yamamoto, K. 2000. Cloning and characteri-zation of a myosin from characean alga, the fastest motor protein in the world. J. Biochem. 127: 1065-1070.

    PubMed  CAS  Google Scholar 

  • Kawecka, B. 1986. Ecology of snow algae. Pol. Polar Res., 7: 407-415.

    Google Scholar 

  • Kikuchi, Y. 1994. Glaciella, a new genus of freshwater Canthocampyidae (Copepoda Harpacticoida) from a glacier in Nepal, Himalayas, Hydrobiologia, 192-193: 59-66.

    Google Scholar 

  • Knaust, R., Urbig, T., Li, L., Taylor, W., and Hastings, J.W. 1998. The circadian rhythm of bioluminescence in Pyrocystis is not due to differences in the amount of luciferase: a comparative study of three bioluminescent marine dinoflagellates. J. Phycol. 34: 167-72.

    CAS  Google Scholar 

  • Koenig, D., and Ward, H. 1983. Prototheca zopfii Kruger strain UMK-13 growth on acetate or n-alkanes. Appl. Environ. Microbiol. 45: 333-336.

    PubMed  CAS  Google Scholar 

  • Kofoid, C.A. 1911. Dinoflagellata of the San Diego region. IV. The genus Gonyaulax, with notes on its skeletal morphology and a discussion of its generic and specific characters. Univ. Calif. Pub. Zool., 8: 188-269.

    Google Scholar 

  • Kohshima, S., Seko, K., and Yoshimura, Y. 1993. Biotic acceleration of glacier melting in Yala Glacier, Langtang region, Nepal Himalaya. Snow and Glacier Hydrology. Proceeding of the Kathumandu Symposium, November 1992 IAHS Publication 218: 309-316.

    Google Scholar 

  • Kohshima, S. 1984. A novel cold-tolerant insect found in a Himalayan glacier. Nature 310: 225-227

    Google Scholar 

  • Kol, E. 1969. The red snow of Greenland. II. Acta Bot. Acad. Sci. Hung. 15: 281-289.

    Google Scholar 

  • Kol, E., and Eurola, S. 1974. Red snow algae from Spitsbergen. Astarte 7: 61-66.

    Google Scholar 

  • Krcméry, V. Jr. 2000. Systemic chlorellosis, an emerging infection in humans caused by algae. Int. J. Antimicrob. Agents 15: 235-237.

    PubMed  Google Scholar 

  • Kruger, W. 1894. Kurt charakteristik einiger niederer organismen in safttlusse der laubba-ume. Hedwigia 33: 216-251.

    Google Scholar 

  • Kutser, T., Metsamaa, L., Strombek, N., and Vahtmae, E. 2006. Monitoring cyanobacterial bloom by satellite remote sensing. Estuarine Coastal Shelf Science, 67: 303-312.

    Google Scholar 

  • Laeng, R.H., Egger, C., Schaffner, T., Borisch, B., and Pedrinis, E. 1994. Protothecosis in an HIV-positive patient. Am. J. Surg. Pathol. 18: 126l-1264.

    Article  Google Scholar 

  • Lapointe, B.E. 1997. Nutrient thresholds for bottom-up control of macroalgal blooms on coral reefs in Jamaica and southeast Florida. Limnol Oceanogr 42: 1119-1131.

    CAS  Google Scholar 

  • Lass-Flörl, C., and Mayr, A. 2007. Human protothecosis. Clin. Microbiol. Rev. 20: 230-242.

    PubMed  Google Scholar 

  • Lerche, M., 1952. Eine durch Algen (Prototheca) hervorgerufene Mastitis der Kuh. Berl. Mu¨nch. Tierarztl.Wochenschr. 4: 64-69.

    Google Scholar 

  • Lewbel, G.S., Wolfson, A., Gerrodette, T., Lippincott, W.H., Wilson, J.L., and Littler, M. M. 1981. Shallow-water benthic communities on California’s outer continental shelf. Mar. Ecol. Prog. Ser. 4: 159-68.

    Google Scholar 

  • Lewin, R.A., and Robinson P.T. 1979. The greening of polar bears in Zoos. Nature, 278: 445-447.

    PubMed  CAS  Google Scholar 

  • Leya, T., Muller, T., Ling, H.U., and Fuhr, G. 2000. 1 Taxonomy and Biophysical Properties of Cryophilic Microalgae and Their Environmental Factors in Northwest Spitsbergen, Svalbard. Proceeding of 57th Easter Snow Conference, Syracuse, New York, USA.

    Google Scholar 

  • Li, X.R., Wang, X.P., Li, T., and Zhang, J.-G. 2002. Microbiotic soil crust and its effect on vegetation and habitat on artificially stabilized desert dunes in Tengger Desert, North China. Biol Fertil Soils 35: 147-154.PER

    Google Scholar 

  • Ling, H.U., and Seppelt, R.D. 1990. Snow algae of the Windmill Islands, continental Antarctica. Mesotaenium berggrenii (Zygnematales, Chlorophyta), the algae of grey snow. Antarctic Science, 2: 143-148.

    Google Scholar 

  • Lissner, A.L., and Dorsey, J.H. 1986. Deep-water biological assemblages of a hard-bottom bank-ridge complex of the southern California continental borderland. Bull. South. Calif. Acad. Sci. 85: 87-101.

    Google Scholar 

  • Littler, M.M., Littler, D.S., Blair, S.M., and Norris, J.N. 1985. Deepest Known Plant Life Discovered on an Uncharted Seamount. Science, 227: 57-59.

    PubMed  CAS  Google Scholar 

  • Liu, Y.D., and Ley, S.H., 1993. On soil algae and their physiological ecology. Acta Hydrobiologica Sinica 17: 272-277.

    Google Scholar 

  • Liu, Y.D., Song, L.R., Shen, Y.W., Li, D.H., Hu, C.X., Huang, Z.B., Hu, Z.L., and Zhu, Y.Z. 2001. Potential of terrestrial microalgae and cyanobacteria in environmental technology. In: Photosynthetic Microorganism in Environmental Biotechnology. pp. 195-216. Kojima, H. and Lee, Y.K., Eds., Springer, Hong Kong.

    Google Scholar 

  • Liu, Y.Z., Dong, G.R., and Li, C.Z. 1994. A study on the factors influencing soil erosion through wind tunnel experiments. Chinese J. of Arid Land Research 7: 359-367.

    Google Scholar 

  • Lizotte, M.P., and Sullivan C.,W. 1992. Biochemical composition and photosynthate distri-bution in sea ice microalgae of Mc-Murdo Sound, Antarctica: evidence for nutrient stress during the spring bloom. Antarct. Sci. 4: 23-30.

    Google Scholar 

  • Lizotte, M.P., Robinson, D.H., and Sullivan, C.W. 1998. Algal pigment signatures in Antarctic sea ice. In: Antarctic Sea Ice: Biological Processes, Interactions and Variability. Antarctic Research Series 73. pp. 93-106.

    Google Scholar 

  • Lizotte, M.P. and Arrigo, K.R., Eds. American Geophysical Union, Washington, D.C.

    Google Scholar 

  • Lobban, C.S., and Harrison, P.J. 1994. Seaweeds Ecology and Physiology. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Lomans, B.P., van der Drift, C., Pol, A., and Op den Camp, H.J.M. 2002. Microbial cycling of volatile organic sulfur compounds. Cell. Molec. Life Scienc. 59: 575-588.

    CAS  Google Scholar 

  • Loope, W.L., and Gifford, G.F. 1972. Influence of a soil microfloral crust on select proper-ties of soils under pinyon-juniper in southeastern Utah. J. Soil Wat. Conser. 27: 164-167.

    Google Scholar 

  • Machado, G., and Moreira, Vital, D. 2001. On the occurrence of epizoic cyanobacteria and liverworts on a neotropical harvestman (Aracnida: Opiliones). Biotropica, 33: 535-538.

    Google Scholar 

  • Markager, S., and Sand-Jensen, K. 1992. Light requirements and depth zonation of marine macroalgae. Mar. Ecol. Prog. Ser. 88: 83-92.

    Google Scholar 

  • Maxwell, C.D., and McKenna Neuman, C. 1994. Photoautotrophs and microaggregation of sand in a freshwater beach-dune complex: implication for sediment transport by wind. Soil Biol. Biochem. 26: 221-233.

    Google Scholar 

  • Metting, B. 1981. The systematics and ecology of soil algae. Bot. Rev. 47: 195-312.

    CAS  Google Scholar 

  • Moller, A., Truyen, U., and Roesler, U. 2007. Prototheca zopfii genotype 2. The causative agent of bovine protothecal mastitis? Vet. Microbiol. 120: 370-374.

    PubMed  Google Scholar 

  • Morris, G.J., Coulson, G.E., Clarke, K.J., Grout, B.W.W. and Clarke, A. 1981. Freezing injury in Chlamydomonas: a synoptic approach. In: Effects of Low Temperatures on Biological Membranes. pp. 285-306. Morris, G. J. and Clarke, A., Eds. Academic Press, London.

    Google Scholar 

  • Morse, D., Pappenheimer, A.M., and Hasting, J.W. 1989. Role of luciferin binding protein in the circadian luminescent reaction of Gonyaulax polyedra. J. Biol. Chem. 264: 11822-11826.

    PubMed  CAS  Google Scholar 

  • Mucher, H.J., Chartres, C.J., Tongway, D.J., and Greene, R.S.B. 1988. Micromorphology and significance of surface crusts of soils in rangelands near Cobar, Australia. Geoderma 42: 227-244.

    Google Scholar 

  • Müller, T., Leya, T., and Fuhr, G. 2001. Persistent snow algal fields in Spitsbergen: field observations and a hypothesis about the annual cell circulation. Arct. Antarct. Alp. Res. 1: 42-51.

    Google Scholar 

  • Müller, T., Bleiß, W., Martin, C. -D., Rogaschewski, S., and Fuhr, G. 1998. Snow algae from north Svalbard: their identification, distribution, pigment and nutrient content. Polar Biology, 20: 14-32.

    Google Scholar 

  • Nakamura, H., Kishi, Y., Shimoumura, O., Morse, D., and Hasting, J.W. 1989. Structure of dinoflagellates luciferin and its enzymatic and non-enzymatic air-oxidation products. J. Am. Chem. Soc. 111: 7607-7611.

    CAS  Google Scholar 

  • Neil, H. 2001. Back to the future: productivity upheaval in a warming ocean. Water & Atmosphere 9 (4).

    Google Scholar 

  • Neil, W.T., and Ross Allen, E. 1954. Algae on turtles: some additional considerations. Ecol. 35: 581-584.

    Google Scholar 

  • Nelson, W.A., and Ryan K.G. 1986. Palmophyllum umbracola sp. nov. (Chlorophyta) from offshore islands of northern New Zealand. Phycologia, 25: 168-77.

    Google Scholar 

  • Nicolas, M.T., Morse, D., C.H., Bassot, J.M., Hastings, W. 1991. Colocalization of luciferin binding protein and luciferase to the scintillons of Gonyoulax polyedra revealed by double immunolabeling after fast-freeze fixation. Protoplasma 160: 159-166.

    CAS  Google Scholar 

  • Nicolas, M.T., Nicolas, G., Johnson, C.H., Bassot, J.M., and Hastings, W. 1987a. Characteri-zation of the bioluminescent organelles in Gonyaulax polyedra (dinoflagellates) after fast freeze fixation and antiluciferase immunogold staining. J. Cell Biol. 105: 723-735.

    PubMed  CAS  Google Scholar 

  • Nicolas, M.T., Sweeney, B.M., and Hastings, J.W. 1987b. The ultrastructural localization of luciferase in three bioluminescent dinoflagellates, two species of Pyrocystis, and Noctiluca, using antiluciferase and immunogold labelling. J. Cell Science 87, 189-196.

    Google Scholar 

  • Noland, R., and Ultsch, G.R. 1981. The roles of temperature and dissolved oxygen in micro-habital selection by the tadpoles of a frog (Rana pipiens) and a toad (Bufo terrestris). Copeia, 1981: 645-652.

    Google Scholar 

  • Normandin, R.F. and Taft, C.E. 1959. A new species of Basicladia from the snail Viviparus malleatus reeve. Ohio J. Science. 59: 58-62.

    Google Scholar 

  • North, W. 1971. Growth of individual fronds of the mature giant kelp, Macrocystis. In: The biology of giant kelp beds (Macrocystis) in California. pp. 123-168. North, W.J., Ed. Beihefte zur Nova Hedwigia 32. J. Cramer. Lehre.

    Google Scholar 

  • Nothnagel, E.A., and Webb W.W. 1982. Hydrodynamic models of viscous coupling between motile myosin and endoplasm in characean algae. J. Cell Biol. 94: 444-454.

    PubMed  CAS  Google Scholar 

  • Nozaki, H., Ohta, N., Morita, E., and Watanabe, M.M. 1998. Toward a natural system of species in Chlorogonium (Volvocales Chlorophyta): a combined analysis of morpho-logical and rbcL gene sequence data. J. Phycol. 34: 1024-1037.

    Google Scholar 

  • Orr, H. 1888. Note on the development of amphibians, chiefly concerning the central nervous system; with additional observations on the hypophysis, mouth, and the appendages and skeleton of the head. Q. J. Microsc. Sci. 29: 295-324.

    Google Scholar 

  • Palmisano, A.C., and Sullivan, C.W. 1985. Pathways of photosynthetic carbon assimilation in sea-ice microalgae from Mc-Murdo Sound, Antarctica. Limnol. Oceanogr. 30: 674-8.

    CAS  Google Scholar 

  • Palmisano, A.C., SooHoo, J.B., and Sullivan, C.W. 1987b. Effects of four environmental variables on photosynthesis-irradiance relationships in Antarctic sea-ice microalgae. Mar. Biol. 94: 299-306.

    Google Scholar 

  • Palmisano, A.C., SooHoo, J.B., Moe, R.L., and Sullivan, C.W. 1987a. Sea ice microbial communities. VII. Changes in under-ice spectral irradiance during the development of Antarctic sea ice microalgal communities. Mar. Ecol. Prog. Ser. 35: 165-73.

    Google Scholar 

  • Pinder, A.W., and Friet, S.C. 1994. Oxygen transport in egg masses of the amphibians Rana sylvatica and Ambystoma maculatum. Convection, diffusion and oxygen production by algae. J. exp. Biol. 197: 17-30.

    PubMed  Google Scholar 

  • Pore, S. 1985, Prototheca taxonomy. Mycopathologia, 90: 129-139.

    Google Scholar 

  • Pore, S. 1986, The association of Prototheca spp. with slime flux in Ulmus americana and other trees. Mycopathologia, 94: 67-73.

    Google Scholar 

  • Pore, S. 1998a. Prototheca and Chlorella species. In: Topley and Wilson’s Microbiology and microbial infections. pp. 631-643. Collier, L.H., Balows, A., and Sussman, M., Eds. Oxford University Press, Oxford.

    Google Scholar 

  • Pore, S. 1998b. Prototheca. In: The yeasts, a taxonomic study. pp. 883-887. Kurtzman, C.P. and Fell, J.W., Eds. Elsevier, New York.

    Google Scholar 

  • Pore, S., Barnett, E., Barnes, W., and Walker, J. 1983. Prototheca ecology. Mycopathologia, 81: 49-62.

    PubMed  CAS  Google Scholar 

  • Ramesh, M.A., Malik, S.B., and Logsdon, J.M.Jr. 2005. A phylogenomic inventory of meiotic genes: Evidence for sex in Giardia and an early eukaryotic origin of meiosis. Current Biology 15: 185-191.

    PubMed  CAS  Google Scholar 

  • Riegman, R., Noordeloos, A.A.M., and Cadee, G.C. 1992. Phaeocystis blooms and eutro-phication of the continental coastal zones of the North Sea. Mar. Biol. 112: 479-484.

    Google Scholar 

  • Robinson, D.H., Arrigo, K.R., Iturriaga, R. and Sullivan, C.W. 1995. Microalgal light-harvesting in extreme low-light environments in McMurdo Sound, Antarctica. J. Phycol. 31: 508-20.

    Google Scholar 

  • Roessler, P.G. 1990. Environmental control of glycerolipid metabolism in microalgae: commercial implications and future research directions. J. Phycol., 26: 393-399.

    CAS  Google Scholar 

  • Rohr, L., Hyman, M., Fallon, S., and Latz, M.I. 2002. Bioluminescence flow visualization in the ocean: an initial strategy based on laboratory experiments. Deep-Sea Res., Part 1, Oceanogr. Res. Pap. 49: 2009-2033.

    Google Scholar 

  • Rohr, L., Latz, M.I., Fallon, S., Nauen, J.C., and Hendricks, E., 1998. Experimental approaches toward interpreting dolphins-stimulated bioluminescence. J. Exp. Biol. 201: 1447-1460.

    PubMed  CAS  Google Scholar 

  • Ryan, K.G., McMinn, A., Mitchell, K.A., and Trenerry, L. 2002. Mycosporine-Like amino acids in Antarctic Sea ice algae, and their response to UVB radiation. Z. Naturforsch. 57: 71-477.

    Google Scholar 

  • Sage, R.F. 2004. The evolution of C4 photosynthesis. New Phytol. 161: 341-370.

    CAS  Google Scholar 

  • Salthe, S.N. 1963. The egg capsules in the Amphibians. J. Morph., 113: 161-171.

    PubMed  CAS  Google Scholar 

  • Samsonoff, W.A., and MacColl R., 2001. Biliproteins and phycobilisomes from cyano-bacteria and red algae at the extremes of habitat. Arch. Microbiol. 176: 400-405.

    PubMed  CAS  Google Scholar 

  • Sarmiento, J.L., and Gruber, N. 2004. Ocean Biogeochemical Dynamics. Princeton University Press, Princeton, USA.

    Google Scholar 

  • Sears, J. R., and Cooper, R.A. 1978. Descriptive ecology of offshore, deep-water, benthic algae in the temperate western North Atlantic. Ocean. Mar. Biol. 44: 309-14.

    Google Scholar 

  • Seliger, H.H., Biggley, W.H., and Swift, E., 1969. Absolute values of photon emission from the marine dinoflagellates Pyrodinium bahamense, Gonyaulax polyedra and Pyrocistis lunula. Photochem. Photobiol. 10: 227-232.

    PubMed  CAS  Google Scholar 

  • Sellmer, K.G., Doucette, G.J., and Kirkpatrick, G.J. 2003. Harmuful algal blooms: causes, impacts and detections. J. Ind. Microbiol. Biotechnol. 30: 383-406.

    Google Scholar 

  • Shields L.M., and Durrell, L.W. 1964. Algae in relation to soil fertility. Bot. Rev. 47: 195-312.

    Google Scholar 

  • Smayda, T.J. 1990. Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic. In: Toxic marine phytoplankton. pp. 29-40. Graneli, E., Sundstrom, B., Edler, L., and Anderson, D.M., Eds., Elsevier, New York.

    Google Scholar 

  • Smetacek, V., Scharek, R., Gordon, L.I., Eichen, H., Fuhrbach, E., Rohardt, G. and Moore, S. 1992. Early spring phytoplankton blooms in ice platelet layers on the southern Weddell Sea, Antarctica. Deep-Sea Res. 39: 153-68.

    CAS  Google Scholar 

  • SooHoo, J.B., Palmisano, A.C., Kottmeier, S.T., Lizotte, M.P., SooHoo, S.L. and Sullivan, C.W. 1987. Spectral light absorption and quantum yield of photosynthesis in sea ice microalgae and a bloom of Phaeocystis pouchetii in McMurdo Sound, Antarctica. Mar. Ecol. Prog. Ser. 39: 175-89.

    Google Scholar 

  • Spalding, H. Foster, M.S. and Hein, J.N. 2003. Composition, Distribution, and abundance of deep water (30 m) macroalgae in central California. J. Phycol. 39: 273-284

    Google Scholar 

  • St. Clair L.L., Johansen J.R. and Webb, B.L. 1986. Rapid stabilization of fire-disturbed sites using a soil crust slurry: inoculation studies. Reclamation and Revegetation Research 4: 261-269.

    Google Scholar 

  • Suk Seo, K., and Fritz, L. 2000. Cell ultrastructural changes correlate with circadian rhythms in Pyrocystis lunula (Pyrrophyta). J. Phycol. 36: 351-358.

    Google Scholar 

  • Sweeney, B.M. 1963. Bioluminescence. Biol. Bull. 125: 177-180.

    Google Scholar 

  • Swift, E., Biggley, W.H., and Seliger, H.H. 1973. Species of oceanic dinoflagellates in the genera Dissodinium and Pyrocystis: interclonal and interspecific comparisons of the color and photon yield of bioluminescence. J. Phycol. 9: 420-426.

    Google Scholar 

  • Swift, E., Lessard, E.J., and Biggley, W.H. 1985. Organisms associated with epipelagic bioluminescence in the Sargasso and the Gulf Stream. J. Plankton Res. 7: 831-848.

    Google Scholar 

  • Takeuchi, N., Kohshima. S., and Seko K. 2001. Structure, formation, darkening process of albedo reducing material (cryoconite) on a Himalayan glacier: a granular algal mat growing on the glacier. Arctic Antarctic Alp. Res. 33: 115-122.

    Google Scholar 

  • Takeuki, N., 2001. The altitudinal distribution of snow algae on an Alaska glacier (Gulkana Glacier in Alaska Range). Hydrol. Process. 15: 3447:3459.

    Google Scholar 

  • Thiele, D., and Bergman, A. 2002. Protothecosis in human medicine. Int. J. Hyg. Environ. Health. 204: 297-302.

    PubMed  Google Scholar 

  • Thomas, W.H. 1972. Observation on snow algae in California. J. Phycol. 8: 1-9.

    Google Scholar 

  • Thomas, D.N., and Dieckmann, G.S. 2002. Antarctic sea ice - a habitat for extremophiles. Science. 295: 641-644.

    PubMed  CAS  Google Scholar 

  • Thompson, R. H. 1972. Algae from the hair of the sloth Bradypus. J. Phycol. 8: 8 (Abstract 2:35).

    Google Scholar 

  • Tumlison, R., and Trauth, S.E. 2006. A novel facultative mutualistic relationship between bufonid tadpoles and flagellated green algae. Herpet. Conserv. Biol. 1: 51-55.

    Google Scholar 

  • Tyrrell, T. 2002. Emiliana huxley blooms and the conditions that induce them. In: Pro-ceedings of First International Coccolithophores Conference. Swiss Federal Institute of Technology, Zurich.

    Google Scholar 

  • Ueno, R., Urano, N., and Suzuki, M. 2003. Phylogeny of the non-photosynthetic green micro-algal genus Prototheca (Trebouxiophyceae, Chlorophyta) and related taxa inferred from SSU and LSU ribosomal DNA partial sequence data. FEMS Microbiol. Lett. 223: 275-280.

    PubMed  CAS  Google Scholar 

  • Ultsch, G.R., Bradford, D.F., and Freda, J. 1999. Physiology: coping with the environment. In: Tadpoles: the biology of anuran larvae. pp. 189-214. McDiarmid, R.W. and Altig, R., Eds., University of Chicago Press, Chicago, USA.

    Google Scholar 

  • Van Dolah, F.M. 2000. Diversity of marine and freshwater algal toxins. In: Seafood and freshwater toxins: pharmacology, physiology, and detection. pp. 19-43. Botana, L.M. Ed., Dekker, New York.

    Google Scholar 

  • Ward, D., and Sexton, O.J. 1981. Anti-predator role of salamander egg membranes. Copeia 3: 724-726.

    Google Scholar 

  • Weeks, S.J., Pitcher, G.C., and Bernard, S. 2004. Satellite monitoring of the evolution of a coccolithophorid bloom in the southern Benguela upwelling system. Oceanography 17: 83-89.

    Google Scholar 

  • Widder, E.A., and Case, J.F., 1982. Distribution of subcellular bioluminescence sources in a dinoflagellate, Pyrocystis fusiformis. Biol. Bull. 162: 423-48.

    Google Scholar 

  • Williams, J.D., Dobrowolsk, J.P., West, N.E., and Gillette, D.A. 1995. Microphytic crust influence on wind erosion. Transactions of the ASAE 38: 131-137.

    Google Scholar 

  • Wilson, T., and Hasting, J.W. 1998. Bioluminescence. Ann. Rev Cell Dev. Biol. 14: 197-230

    CAS  Google Scholar 

  • Winn-Williams, D.D. 2000. Cyanobacteria in deserts—life at the limit? In: The ecology of cyanobacteria. pp. 341-346. Whitton, B.A. and Potts, M., Eds., Kluwer Academic Press, Dordrecht, The Netherlands.

    Google Scholar 

  • Wirth, F.A., Passalacqua, J., and Kao, G. 1999. Disseminated cutaneous protothecosis in an immunocompromised host: a case report and literature review. Cutis 63: 185-l88.

    PubMed  CAS  Google Scholar 

  • Wu, C.S., and Kam, Y.C. 2005. Thermal tolerance and thermoregulation by taiwanese rhacophorid tadpoles (Buergeria japonica) living in geothermal hot springs and streams. Herpetologica, 61: 35-46.

    Google Scholar 

  • Yamamoto, K., Kikuyama, M., Sutoh-Yamamoto, N., and Kamitsubo, E. 1994. Purification of actin based motor protein from Chara corallina. Proc. Jpn. Acad. 70: 175-180.

    CAS  Google Scholar 

  • Yamamoto, K., Shimada, K., Ito, K., Hamada, S., Ishijima, A., Tsuchiya, T., and Tazawa, M. 2006. Chara Myosin and the Energy of Cytoplasmic Streaming. Plant Cell Physiol., 47: 1427-1431.

    PubMed  CAS  Google Scholar 

  • Yokohama, Y. 1981. Distribution of the green light-absorbing pigments siphonaxanthin and siphonein in marine green algae. Bot. Mar. 24: 637-40.

    CAS  Google Scholar 

  • Yokohama, Y., Kageyama, A., Ikawa, T., and Shimura, S. 1977. A carotenoids characteristic of chlorophycean seaweeds living in deep coastal waters. Bot. Mar. 20: 433-6.

    CAS  Google Scholar 

  • Yoshimura, Y., Kohshima, S., and Ohtani, S. 1997. A community of snow algae on an Himalayan glacer: change of algae biomass and community structures with altitude. Arct. Alp. Res. 29: 126-137.

    Google Scholar 

  • Yoshimura, Y., Kohshima, S., Takeuchi, N., Seko, K., and Fujita, K. 2006. Snow algae in a Himalayan ice core: new environmental markers for ice core analyses and their cor-relation with summer mass balance. Annals Glaciol. 43: 148-153.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Gualtieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this paper

Cite this paper

Barsanti, L. et al. (2008). Oddities and Curiosities in the Algal World. In: Evangelista, V., Barsanti, L., Frassanito, A.M., Passarelli, V., Gualtieri, P. (eds) Algal Toxins: Nature, Occurrence, Effect and Detection. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8480-5_17

Download citation

Publish with us

Policies and ethics