Development of Fire Emissions Inventory Using Satellite Data

  • Biswadev A. Roy
  • George A. Pouliot
  • J. David Mobley
  • Thompson G. Pace
  • Thomas E. Pierce
  • Amber J. Soja
  • James J. Szykman
  • J. Al-Saadi
Part of the NATO Science for Peace and Security Series Series C: Environmental Security book series (NAPSC)

Abstract

There are multiple satellites observing and reporting fire imagery at various spatial and temporal resolutions and each system has inherent strengths and limitations. In this study, data are acquired from the Moderate Resolution Imaging Spectro-radiometer (MODIS) aboard the National Aeronautics & Space Administration’s (NASA’s) Earth Observing System satellites. The MODIS-equipped satellite is polar orbiting with one daytime equatorial crossing and a 1-km2 resolution product. Fire-counts are obtained from two MODIS instruments aboard two different satellites having 10:30 AM and 1:30 PM equatorial crossing time, respectively. Here, a general methodology of processing the MODIS data is provided. An effective area burned estimate, obtained using the MODIS fire count product, is compared with fire occurrence and area burned estimates obtained independently from a 2002 ground-based fire database. Successful development and application of this technique for characterizing fire emissions in the United States (U.S.) could enhance the development of techniques for characterization of fire emissions for air quality modeling and its applications.

Keywords

Air quality fire emissions satellite observations of fires 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cahoon DR, Jr, Stocks BJ, Alexander ME, Baum BA, Goldammer JG (2000) Wildland fire detection from space: theory and application, In: Biomass Burning and Its Inter-relationship with the Climate System, Advances in Global Change Research Series, M Beniston (senior ed.), Kluwer, Dordretch/Boston, MA, pp. 151-169.Google Scholar
  2. Flannigan MD, Vonder Haar TH (1986) Forest fire monitoring using NOAA satellite AVHRR, Can. J. Forest Res., 16, 975-982.CrossRefGoogle Scholar
  3. Giglio L, Descloitres J, et al. (2003) An enhanced contextual fire detection algori-thm for MODIS, Remote. Sens. Environ., 87 (2-3), 273-282.CrossRefGoogle Scholar
  4. Justice CO, Giglio L, Korontzi S, Owens J, Morissette JT, Roy D, Descloitres J, Alleaume S, Petitcolin F, Kaufman Y (2002) The MODIS fire products, Remote Sens. Environ., 83, 244-262.Google Scholar
  5. Kaufman YJ et al. (1990a) Remote sensing of biomass burning in the tropics, In: Fire in the Tropical Biota: Ecosystem Processes and Global challenges, JG Gold-ammer (ed.), Springer-Verlag, Berlin, pp. 371-399.Google Scholar
  6. Kaufman YJ et al. (1990b) Remote sensing of biomass burning in the tropics, J. Geophy. Res., 95(D), 9927-9939.CrossRefGoogle Scholar
  7. Pace TG (2007) Wildland fire National Emissions Inventory - Past, Present and Future, 16th Annual International Emissions Inventory Conference - “Emission Inventories: Integration, Analysis, Communication”, Raleigh, NC, May 14-17, 2007.Google Scholar
  8. Pace TG, Pouliot GA (2007) EPA’s perspective on wildland fire emission inventories-past, present and future, Air and Waste Management Association Annual Conference and Exhibition, Pittsburg, PA, June 2007.Google Scholar
  9. Pouliot G, Pierce T, Benjey W, O’Neill SM, Ferguson SA (2005) Wildfire emission modeling: integrating BlueSky and SMOKE, 14th International Emission Inventory Conference, Las Vegas, NV, April 11-14.Google Scholar
  10. Robinson JM (1991) Fire from space: Global fire evaluation using infrared remote sensing, Int. J. Remote Sens., 12(1), 3-24.CrossRefGoogle Scholar
  11. Roy Biswadev GA, Pouliot A, Gilliland T, Pierce S, Howard PV, Bhave, Benjey W (2007) Refining fire emissions for air quality modeling with remotely sensed fire counts: A wildfire case study, Atmos. Environ., 41, 655-665.CrossRefGoogle Scholar
  12. Soja A, Al-Saadi J, Pierce B, Kittaka C, Szykman J, Giglio L, Randall D, Raffuse S, Roy B, Williams DJ, Pace T, Kordzi J, Pierce TE, Moore T (2007) A methodology for estimating area burned using satellite-based data in near-real-time in Oregon and Arizona, 16th Annual International Emissions Inventory Conference - “Emission inventories: Integration, Analysis, Communication”, Raleigh, NC, May 14-17, 2007. Google Scholar
  13. Soja AJ, Sukhinin AI, Cahoon DR Jr, Shugart HH, Stackhouse PW Jr (2004) AVHRR-derived fire frequency, distribution and area burned in Siberia, Int. J. Remote Sens., 25(10), 22.CrossRefGoogle Scholar
  14. US Environmental Protection Agency (US EPA) (2007) Technology Transfer Network, Clearinghouse for Inventories & Emissions Factors, Available online at http://www.epa.gov/ttn/chief/net/index.html

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Biswadev A. Roy
  • George A. Pouliot
  • J. David Mobley
    • 1
  • Thompson G. Pace
  • Thomas E. Pierce
  • Amber J. Soja
  • James J. Szykman
  • J. Al-Saadi
  1. 1.Atmospheric Sciences Modeling DivisionNational Oceanic and Atmospheric Administration /EPAResearch Triangle ParkUSA

Personalised recommendations