Prostate Cancer: Detection and Monitoring Using Mitochondrial Mutations as a Biomarker

  • Gabriel D. DakuboEmail author
  • Ryan L. Parr
  • John P. Jakupciak
Part of the Methods of Cancer Diagnosis, Therapy, and Prognosis book series (HAYAT, volume 2)

Neoplastic transformation of the prostate gland is one of the leading causes of cancer morbidity and mortality among men in the industrialized world. As an ageassociated disease, the incidence of prostate cancer (PCa) will remain on the rise, mirroring the ageing Western population. Similar to other cancers, PCa is debilitating when diagnosed late. Surgical resection of organ-confined tumors is the best available curative method. Therefore, to obtain optimal cure, it is imperative that methods are developed that enable early detection and monitoring of this disease. Epigenetic nuclear gene silencing and alterations in both nuclear and mitochondrial genomes precede histopathologic changes indicative of PCa. Thus, sensitive assays that target the genetic signatures should help with early detection and successful treatment of PCa.


Prostate Cancer Mitochondrial Genome Prostate Epithelial Cell Mitochondrial Mutation SYBR Green Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, S., Bankier, A.T., Barrell, B.G., de Bruijn, M.H., Coulson, A.R., Drouin, J., Eperon, I.C., Nierlich, D.P., Roe, B.A., Sanger, F., Scheier, P.H., Smith, A.J., Staden, R., and Young, I.G. 1981. Sequence and organization of the human mitochondrial genome.Nature 290: 457–465PubMedCrossRefGoogle Scholar
  2. Baysal, B.E. 2006. Role of mitochondrial mutations in cancer.Endocr. Pathol. 17: 203–212PubMedCrossRefGoogle Scholar
  3. Blok, R.B., Gook, D.A., Thorburn, D.R., and Dahl, H.H. 1997. Skewed segregation of the mtDNA nt 8993 (T—>G) mutation in human oocytes.Am. J. Hum. Genet. 60: 1495–1501PubMedCrossRefGoogle Scholar
  4. Booker, L.M., Habermacher, G.M., Jessie, B.C., Sun, Q.C., Baumann, A.K., Amin, M., Lim, S.D., Fernandez-Golarz, C., Lyles, R.H., Brown, M.D., Marshall, F.F., and Petros, J.A. 2006. North American white mitochondrial haplo-groups in proState and renal cancer.J. Urol. 175: 468–472PubMedCrossRefGoogle Scholar
  5. Chen, J.Z., Gokden, N., Greene, G.F., Green, B., and Kadlubar, F.F. 2003. Simultaneous generation of multiple mitochondrial DNA mutations in human proState tumors suggests mito-chondrial hyper-mutagenesis.Carcinogenesis 24: 1481–1487PubMedCrossRefGoogle Scholar
  6. Clayton, D.A., and Vinograd, J. 1969. Complex mitochondrial DNA in leukemic and normal human myeloid cells.Proc. Natl. Acad. Sci. USA 62: 1077–1084PubMedCrossRefGoogle Scholar
  7. Costello, L.C., and Franklin, R.B. 2006. The clinical relevance of the metabolism of proState cancer; zinc and tumor suppression: connecting the dots.Mol. Cancer 5: 17PubMedCrossRefGoogle Scholar
  8. Cutler, D.J., Zwick, M.E., Carrasquillo, M.M., Yohn, C.T., Tobin, K.P., Kashuk, C., Mathews, D.J., Shah, N.A., Eichler, E.E., Warrington, J.A., and Chakravarti, A. 2001. High-throughput variation detection and genotyping using micro-arrays.Genome Res. 11: 1913–1925PubMedGoogle Scholar
  9. Dakubo, G.D., Parr, R.L., Costello, L.C., Franklin, R.B., and Thayer, R.E. 2006. Altered metabolism and mitochondrial genome in proState cancer.J. Clin. Pathol. 59: 10–16PubMedCrossRefGoogle Scholar
  10. Giles, R.E., Blanc, H., Cann, H.M., and Wallace, D.C. 1980. Maternal inheritance of human mito-chondrial DNA.Proc. Natl. Acad. Sci. USA 77: 6715–6719PubMedCrossRefGoogle Scholar
  11. Herrmann, P.C., Gillespie, J.W., Charboneau, L., Bichsel, V.E., Paweletz, C.P., Calvert, V.S., Kohn, E.C., Emmert-Buck, M.R., Liotta, L.A., and Petricoin, E.F., 3rd. 2003. Mitochondrial proteome: altered cytochrome c oxidase subu-nit levels in proState cancer.Proteomics 3: 1801–1810PubMedCrossRefGoogle Scholar
  12. Higuchi, M., Kudo, T., Suzuki, S., Evans, T.T., Sasaki, R., Wada, Y., Shirakawa, T., Sawyer, J.R., and Gotoh, A. 2006. Mitochondrial DNA determines androgen dependence in proState cancer cell lines.Oncogene 25: 1437–1445PubMedCrossRefGoogle Scholar
  13. Horton, T.M., Petros, J.A., Heddi, A., Shoffner, J., Kaufman, A.E., Graham, S.D., Jr., Gramlich, T., and Wallace, D.C. 1996. Novel mitochondrial DNA deletion found in a renal cell carcinoma.Genes Chromosomes Cancer 15: 95–101PubMedCrossRefGoogle Scholar
  14. Jakupciak, J.P., Dakubo, G.D., Maragh, S., and Parr, R.L. 2006. Analysis of potential cancer biomarkers in mitochondrial DNA.Curr. Opin. Mol. Ther. 8: 500–506PubMedGoogle Scholar
  15. Jeronimo, C., Nomoto, S., Caballero, O.L., Usadel, H., Henrique, R., Varzim, G., Oliveira, J., Lopes, C., Fliss, M.S., and Sidransky, D. 2001. Mitochondrial mutations in early stage proState cancer and bodily fluids.Oncogene 20: 5195–5198PubMedCrossRefGoogle Scholar
  16. Jessie, B.C., Sun, C.Q., Irons, H.R., Marshall, F.F., Wallace. D.C., and Petros, J.A. 2001. Accumulation of mitochondrial DNA deletions in the malignant proState of patients of different ages.Exp. Gerontol. 37: 169–174PubMedCrossRefGoogle Scholar
  17. Jorde, L.B., Watkins, W.S., Bamshad, M.J., Dixon, M.E., Ricker, C.E., Seielstad, M.T., and Batzer, M.A. 2000. The distribution of human genetic diversity: a comparison of mitochondrial, auto-somal, and Y-chromosome data.Am. J. Hum. Genet. 66: 979–988PubMedCrossRefGoogle Scholar
  18. Maitra, A., Cohen, Y., Gillespie, S.E., Mambo, E., Fukushima, N., Hoque, M.O., Shah, N., Goggins, M., Califano, J., Sidransky, D., and Chakravarti, A. 2004. The Human MitoChip:a high-throughput sequencing microarray for mitochondrial mutation detection.Genome Res. 14: 812–819PubMedCrossRefGoogle Scholar
  19. Mehra, N., Penning, M., Maas, J., van Daal, N., Giles, R.H., and Voest, E.E. 2007. Circulating mitochondrial nucleic acids have prognostic value for survival in patients with advanced proState cancer.Clin. Cancer Res. 13: 421–426PubMedCrossRefGoogle Scholar
  20. Meierhofer, D., Mayr, J.A., Ebner, S., Sperl, W., and Kofler, B. 2005. Rapid screening of the entire mitochondrial DNA for low-level hetero-plasmic mutations.Mitochondrion 5: 282–296PubMedCrossRefGoogle Scholar
  21. Modica-Napolitano, J.S., Kulawiec, M., and Singh, K.K. 2007. Mitochondria and human cancer.Curr. Mol. Med. 7: 121–131PubMedCrossRefGoogle Scholar
  22. O'Connell, C.D., Tully, L.A., Devaney, J.M., Marino, M.A., Jakupciak, J.P., and Atha, D.H. 2003. Renewable standard reference material for the detection of TP53 mutations.Mol. Diagn. 7: 85–97PubMedCrossRefGoogle Scholar
  23. Parr, R.L., Dakubo, G.D., Crandall, K.A., Maki, J., Reguly, B., Aguirre, A., Wittock, R., Robinson, K., Alexander, J.S., Birch-Machin, M.A., Abdel-Malak, M., Froberg, M.K., Diamandis, E.P., and Thayer, R.E. 2006a. Somatic mitochondrial DNA mutations in proState cancer and normal appearing adjacent glands in comparison to age-matched proState samples without malignant histology.J. Mol. Diagn. 8: 312–319CrossRefGoogle Scholar
  24. Parr, R.L., Maki, J., Reguly, B., Dakubo, G.D., Aguirre, A., Wittock, R., Robinson, K., Jakupciak, J.P., and Thayer, R.E. 2006b. Thepseudo-mitochondrial genome influences mistakes in heteroplasmy interpretation.BMC. Genomics 7: 185CrossRefGoogle Scholar
  25. Petros, J.A., Baumann, A.K., Ruiz-Pesini, E., Amin, M.B., Sun, C.Q., Hall, J., Lim, S., Issa, M.M., Flanders, W.D., Hosseini, S.H., Marshall, F.F., and Wallace, D.C. 2005. mtDNA mutations increase tumorigenicity in proState cancer.Proc. Natl. Acad. Sci. USA 102: 719–724PubMedCrossRefGoogle Scholar
  26. Ronaghi, M., Uhlen, M., and Nyren, P. 1998. A sequencing method based on real-time pyro-phosphate.Science 281: 363–365PubMedCrossRefGoogle Scholar
  27. Schollen, E., Dequeker, E., McQuaid, S., Vankeirsbilck, B., Michils, G., Harvey, J., van den Akker, E., van Schooten, R., Clark, Z., Schrooten, S., Mattijs, G., and DDQA Collaborative Group. 2005. Diagnostic DHPLC Quality Assurance (DDQA): a collaborative approach to the generation of validated and standardized methods for DHPLC-based mutation screening in clinical genetics laboratories.Hum. Mutat. 25: 583–592PubMedCrossRefGoogle Scholar
  28. Taylor, R.W., and Turnbull, D.M. 2005. Mitochondrial DNA mutations in human disease.Nat. Rev. Genet. 6: 389–402PubMedCrossRefGoogle Scholar
  29. Vallone, P.M., Jakupciak, J.P., and Coble, M.D. 2007. Forensic application of the Affymetrix human mitochondrial resequencing array.For . Sci. Inter. 1: 196–198Google Scholar
  30. Warburg, O. 1931.The metabolism of tumors. New York: Smith RRGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Gabriel D. Dakubo
    • 1
    Email author
  • Ryan L. Parr
    • 1
  • John P. Jakupciak
    • 2
  1. 1.Genesis Genomics, Inc.Thunder BayCanada
  2. 2.Biochemical Science DivisionNational Institute of Standards and TechnologyGaithersburg

Personalised recommendations