Advertisement

Non-Small Cell Lung Carcinoma: EGFR Gene Mutations and Response to Gefitinib

  • Armando BartolazziEmail author
Part of the Methods of Cancer Diagnosis, Therapy, and Prognosis book series (HAYAT, volume 2)

Lung cancer is the most common cancer in the world and the leading cause of cancerrelated mortality (12.6% of all new cancers, 17.8% of cancer deaths). There were an estimated 1.2 million new cases and 1.1 million deaths in the year 2000. The high mortality is mainly due to early development of systemic disease and resistance to currently available chemotherapy. Men have seen declines in incidence and mortality rates in the last ten years, which is associated with reduction in smoking. This is not the case for women, among whom these rates continue to increase. Whether this increase suggests a higher gender-related risk of lung cancer for women or merely reflects changing smoking patterns remains controversial. Almost all lung malignant tumors are carcinomas (other histological types are < 1%) broadly divided into smallcell lung cancer (SCLC), comprising 20% of lung carcinomas and non-small-cell lung cancers (NSCLCs), comprising ̃ 80% of lung carcinomas. SCLC is a tumor of neural crest origin whereas NSCLCs originate in bronchial epithelial cells or alveolar and bronchioloalveolar cells and represent a spectrum of histological subtypes including squamous carcinoma, adenocarcinoma, bronchioloalveolar carcinoma, undifferentiated large-cell carcinoma and anaplastic carcinoma. NSCLCs do not represent a single pathological entity but a group of diseases with different ‘molecular signatures,’ and consequently different biological features. Genetic models for the development of SCLC and NSCLC have been recently proposed (Yokota and Kohno, 2004; Testa and Siegfried, 1992), and it is becoming clear that the failure of conventional cytotoxic chemotherapy to treat advanced NSCLCs, observed in the last two decades, likely reflects the biological and molecular heterogeneity of these tumors. Although surgery represents the best therapeutic option with potential for cure in patients with early-stage NSCLCs (̃1/3 of the cases), the treatment of metastatic NSCLCs is still a challenge (Tables 20.1 and 20.2). Approximately, 50% of patients with stage IV disease are incurable with currently available chemotherapy. Several chemotherapeutic agents have been developed in the last three decades for the treatment of NSCLCs, but randomized trials of platinum-based combinations seem to reach a therapeutic plateau with an objective response rate of 26–46% and a median survival time (MST) of 7–11 months for patients with stage IIIB or IV disease (Table 20.2) (Abeloff et al., 2004). In general, cytotoxic chemotherapy results in a modest increase in survival at the cost of significant toxicity to the patient.

Keywords

Epidermal Growth Factor Receptor Epidermal Growth Factor Receptor Mutation KRAS Mutation Epidermal Growth Factor Receptor Gene Epidermal Growth Factor Receptor Signaling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeloff, M.D., Armitage, J.O., Niederhuber, J.E., Kastan, M.B., McKenna, W.J. 2004. Clinical Oncology, vol. 3, Third Ed. pp. 1649–1743. Philadelphia, PA: Ortho Biothec/Excerpta Medica/ElsevierGoogle Scholar
  2. Alroy, I., and Yarden, Y. 1997. The ErbB signaling network in embryogenesis and oncogenesis: signal diversification through combinatorial ligand-receptor interactions. FEBS Lett. 410: 83–86PubMedCrossRefGoogle Scholar
  3. Bell, D.W., Lynch, T.J., Haserlat, S.M., Harris, P.L., Okimoto, R.A., Brannigan, B.W., Sgroi, D.C., Muir, B., Riemenschneider, M.J., Iacona, R.B., Krebs, A.D., Johnson, D.H., Giaccone, G., Herbst, R.S., Manegold, C., Fukuoka, M., Kris, M.G., Baselga, J., Ochs, J.S., and Haber, D.A. 2005. Epidermal growth factor receptor mutations and gene amplification in non-small cell lung cancer: molecular analysis of the IDEAL/INTACT gefitinib trials. J. Clin. Oncol. 23: 8081–8092PubMedCrossRefGoogle Scholar
  4. Bianco, R., Shin, I., Ritter, C.A., Yakes, F.M., Basso, A., Rosen, N., Tsurutani, J., Dennis, P.A., Mills, G.B., and Arteaga, C.L. 2003. Loss of PTEN/MMAC1/TEP in EGF receptor-expressing tumor cells counteract the antitumor action of EGFR tyrosine kinase inhibitors. Oncogene 22: 2812–2822PubMedCrossRefGoogle Scholar
  5. Cappuzzo, F., Varella-Garcia, M., Shigematsu, H., Domenichini, I., Bartolini, S., Ceresoli, G.L., Rossi, E., Ludovini, V., Gregorc, V., Toschi, L., Franklin, W.A., Crino, L., Gazdar, A.F., Bunn, P.A. Jr., and Hirsch, F.R. 2005. Increased HER2 gene copy number is associated with response to gefitinib therapy in epidermal growth factor receptor-positive non-small cell lung cancer patients. J. Clin. Oncol. 23: 5007–5018PubMedCrossRefGoogle Scholar
  6. Engelman, J.A., Zejnullahu, K., Mitsudomi, T., Song, Y., Hyland, C., Park, J.O., Lindeman, N., Gale, C.M., Zhao, X., Christensen, J., Kosaka, T., Holmes, A.J., Rogers, A.M., Cappuzzo, F., Mok, T., Lee, C., Johnson, B.E., Cantley, L.C., and Janne, P.A. 2007. MET amplification leads to gefitinib resistance in lung cancer by activat-ingERBB3 signaling. Science 316: 1039–1042PubMedCrossRefGoogle Scholar
  7. Ferby, I., Reschke, M., Kudlacek, O., Knyazev, P., Pante, G., Amann, K., Sommergruber, W., Kraut, N., Ullrich, A., Fassler, R., and Klein, R. 2006. Mig6 is a negative regulator of EGF receptor-mediated skin morphogenesis and tumor formation. Nat. Med. 12: 568–573 (erratum in Nat. Med. 12: 862)PubMedCrossRefGoogle Scholar
  8. Fukuoka, M., Yano, S., Giaccone, G., Tamura, T., Nakagawa, K., Douillard, J.Y., Nishiwaki, Y., Vansteenkiste, J., Kudoh, S., Rischin, D., Eek, R., Horai, T., Noda, K., Takata, I., Smit, E., Averbuch, S., Macleod, A., Feyereislova, A., Dong, R.P., and Baselga, J. 2003. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small cell lung cancer (The IDEAL 1 Trial). J. Clin. Oncol. 21: 2237–2246PubMedCrossRefGoogle Scholar
  9. Greulich, H., Chen, T-H., Feng, W., Janne, P.A., Alvarez, J.V., Bulmer, S.E., Zappaterra, M., Frank, D.A., Hahn, W.C., Sellers, W.R., and Meyerson, M. 2005. Oncogenic transformation by inhibitor-sensitive and-resistant EGFR mutants. PLoS Med. 2: e313PubMedCrossRefGoogle Scholar
  10. Han, S.W., Kim, T.Y., Hwang, P.G., Jeong, S., Kim, J., Choi, I.S., Oh, D.Y., Kim, J.H., Kim, D.W., Chung, D.H., Im, S.A., Kim, Y.T., Lee, J.S., Heo, D.S., Bang, Y.J., and Kim, N.H. 2005. Predictive and prognostic impact of epidermal growth factor receptor mutation in non-small cell lung cancer patients treated with gefitinib. J. Clin. Oncol. 23: 2493–2501PubMedCrossRefGoogle Scholar
  11. Haneda, H., Sasaki, H., Lindeman, N., Kawano, O., Endo, K., Suzuki, E., Shimizu, S., Yukiue, H., Kobayashi, Y., Yano, M., and Fujii, Y. 2006. A correlation between EGFR gene mutation status and bronchioloalveolar carcinoma features in Japanese patients with adenocarcinoma. Jpn. J. Clin. Oncol. 36: 69–75PubMedCrossRefGoogle Scholar
  12. Hirsch, F.R., Varella-Garcia, M., Bunn, P.A. Jr., Di Maria, M.V., Veve, R., Bremmes, R.M., Baron, A.E., Zeng, C., and Franklin, W.A. 2003. Epidermal growth factor receptor in non-small cell lung carcinoma: correlation between gene copy number and protein expression and impact on prognosis. J. Clin. Oncol. 21: 3798–3807PubMedCrossRefGoogle Scholar
  13. Inoue, A., Suzuki, T., Fukuara, T., Maemondo, M., Kimura, Y., Morikawa, N., Watanabe, H., Saijo, Y., and Nukiwa, T. 2006. Prospective phase II study of gefitinib for chemotherapy-naive patients with advanced non-small-cell lung cancer with epidermal growth factor receptor gene mutation. J. Clin. Oncol. 24: 3340–3346PubMedCrossRefGoogle Scholar
  14. Ji, H., Li, D., Chen, L., Shimamura, T., Kobayashi, S., McMamara, K., Mahmood, U., Mitchell, A., Sun, Y., Al-Hashem, R., Chirieac, L.R., Padera, R., Bronson, R.T., Kim, W., Janne, P.A., Shapiro, G.I., Tenen, D., Johnson, B.E., Weissleder, R., Sharpless, N.E., and Wong, K.K. 2006. The impact of human EGFR kinase domain mutations on lung tumorigenesis and in vivo sensitivity to EGFR-targeted therapies. Cancer Cell 9: 485–495PubMedCrossRefGoogle Scholar
  15. Kawamoto, T., Sato, J.D., Le, A., Polikoff, J., Sato, G.H., and Mendelsohn, J. 1983. Growth stimulation of A431 cells by EGF: identification of high affinity receptors for epidermal growth factor by an anti-receptor monoclonal antibody. Proc. Natl. Acad. Sci. USA 80: 1337–1341PubMedCrossRefGoogle Scholar
  16. Kobayashi, S., Boggon, T.J., Dayaram, T., Janne, P.A., Kocher, O., Meyerson, M., Johnson, B.E., Eck, M.J., Tenen, D.G., and Halmos, B. 2005a. EGFR mutation and resistance of non-small cell lung cancer to gefitinib. N. Engl. J. Med. 352: 786–792CrossRefGoogle Scholar
  17. Kobayashi, S., Ji, H., Yuza, Y., Meyerson, M., Wong, K.K., Tenen, D.G., and Halmos, B. 2005b. An alternative inhibitor overcomes resistance caused by a mutation of the epidermal growth factor receptor. Cancer Res. 65: 7096–7101CrossRefGoogle Scholar
  18. Kwak, E.L., Sordella, R., Bell, D.W., Godin-Heymann, N., Okimoto, R.A., Brannigan, B.W., Harris, P.L., Driscoll, D.R., Fidias, P., Lynch, T.J., Rabindran, S.K., McGinnis, J.P., Wissner, A., Sharma, S.W., Isselbacher, K.J., Settleman, J., and Haber, D.A. 2005. Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. Proc. Natl. Acad. Sci. USA 102: 7665–7670PubMedCrossRefGoogle Scholar
  19. Lynch, T.J., Bell, D.W., Sordella, R., Gurubhagavatula, S., Okimoto, R.A., Brannigan, B.W., Harris, P.L., Haserlat, S.M., Supko, J.G., Haluska, F.G., Louis, D.N., Christiani, D.C., Settleman, J., and Haber, D.A. 2004. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350: 2129–2139PubMedCrossRefGoogle Scholar
  20. Marchetti, A., Martella, C., Felicioni, L., Barassi, F., Salvatore, S., Chella, A., Camplese, P.P., Iarussi, T., Mucilli, F., Mezzetti, A., Cuccurullo, F., Sacco, R., and Buttitta, F. 2005. EGFR mutations in non-small cell lung cancer: analysis of a large series of cases and development of a rapid and sensitive method for diagnostic screening with potential implications on pharmacologic treatment. J. Clin. Oncol. 23: 857–865PubMedCrossRefGoogle Scholar
  21. Mendelsohn, J., and Baselga, J. 2006. Epidermal growth factor receptor targeting. Semin. Oncol. 33: 369–385PubMedCrossRefGoogle Scholar
  22. Miller, V.A., Zakowski, M., Riely, G.J., Pao, W., Ladanyi, M., Tsao, A.S., Sandler, A., Herbst, R., Kris, M.G., and Johnson, D.H. 2006. EGFR mutation and copy number, EGFR protein expression and KRAS mutation as predictors of outcome with erlotinib in bronchioloalveolar cell carcinoma (BAC): results of a prospective phase III trial. J. Clin. Oncol. (meeting abstracts) 24: 7003Google Scholar
  23. Mitsudomi, T., Steinberg, S.M., Oie, H.K., Mulshine, J.L., Phelps, R., Viallet, J., Pass, H., Minna, J.D., and Gazdar, A.F. 1991. Ras gene mutation in non-small cell lung cancers are associated with shortened survival irrespective of the treatment intent. Cancer Res. 51: 4999–5002PubMedGoogle Scholar
  24. Mitsudomi, T., Kosaka, T., Endoh, H., Horio, Y., Hida, T., Mori, S., Hatooka, S., Shinoda, M., Takahashi, T., and Yatabe, Y. 2005. Mutations of the epidermal growth factor receptor gene predict prolonged survival after gefitinib treatment in patients with non-small cell lung cancer with postoperative recurrence. J. Clin. Oncol. 23: 2513–2520PubMedCrossRefGoogle Scholar
  25. Mitsudomi, T., Kosaka, T., Yatabe, Y. 2006. Biological and clinical implications of EGFR mutations in lung cancer. Int. J. Clin. Oncol. 11: 190–198PubMedCrossRefGoogle Scholar
  26. Paez, J., Janne, P.A., Lee, J.C., Tracy, S., Greulich, H., Gabriel, S., Herman, P., Kaye, F.J., Lindeman, N., Boggon, T.J., Naoki, K., Sasaki, H., Fujii, Y., Eck, M.J., Sellers, W.R., Johnson, B.E., and Meyerson, M. 2004. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304: 1497–1500PubMedCrossRefGoogle Scholar
  27. Pao, W., Miller, V., Zakowski, M., Doherty, J., Politi, K., Sarkaria, I., Singh, B., Heelan, R., Rusch, V., Fulton, L., Mardis, E., Kupfer, D., Wilson, R., Kris, M., Varmus, H. 2004. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl. Acad. Sci. USA 101: 13306–13311PubMedCrossRefGoogle Scholar
  28. Pao, W., Wang, T.J., Riely, G.J., Miller, V., Pan, Q., Ladanyi, M., Zakowski, M.F., Heelan, R.T., Kris, M.G., and Varmus, H.E. 2005. KRAS mutations and primary resistance of lung adenocarcinoma to gefitinib or erlotinib. PLoS Med. 2: e17PubMedCrossRefGoogle Scholar
  29. Politi, K., Zakowsky, M.F., Fan, P.D., Schonfeld, E.A., Pao, W., and Varmus, H.E. 2006. Lung adenocarcinomas induced in mice by mutant EGF receptor found in human lung cancer respond to a tyrosine kinase inhibitor or to down regulation of the receptors. Genes Dev. 20: 1496–1510PubMedCrossRefGoogle Scholar
  30. Rabindran, S.K., Discafani, C.M., Rosfjord, E.C., Baxter, M., Floyd, M.B., Golas, J., Hallett, W.A., Johnson, B.D., Nilakanttan, R., Overbeek, E., Reich, M.F., Shen, R., Shi, X., Tsou, H.R., Wang, Y.F., and Wissner, A. 2004. Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Cancer Res. 64: 3958–3965PubMedCrossRefGoogle Scholar
  31. Rusch, V., van de Wetering, M.L., Mooi, W.J., Evers, S.G., van Zandwijk, N., and Bos, J.L. 1993. Differential expression of the epidermal growth factor receptor and its ligands in primary non small cell lung cancers and adjacent benign lung. Cancer Res. 53: 2379–2385PubMedGoogle Scholar
  32. Sharma, S.V., Bell, D.W., Settleman, J., and Haber, D.A. 2007. Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer 7: 169–181PubMedCrossRefGoogle Scholar
  33. Shepherd, F.A., Rodrigues Pereira, J., Ciuleanu, T., Tan, E.H., Hirsh, V., Thongprasert, S., Campos, D., Maoleekoonpiroj, S., Smylie, M., Martins, R., van Kooten, M., Dediu, M., Findlay, B., Tu, D., Johnston, D., Bezjak, A., Clark, G., Santabarbara, P., and Seymour, L. (National Cancer Institute of Canada Clinical Trials Group). 2005. Erlotinib in previously treated non-small cell lung cancer. N. Engl. J. Med. 353: 123–132PubMedCrossRefGoogle Scholar
  34. Sordella, R., Bell, D.W., Haber, D.A., and Settleman, J. 2004. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 305: 1163–1167PubMedCrossRefGoogle Scholar
  35. Testa, J.R., and Siegfried, J.M. 1992. Chromosome abnormalities in human non-small cell lung cancer. Cancer Res. 52: 2702s–2706sPubMedGoogle Scholar
  36. Vivanco, I., and Sawyers, C.L., 2002. The phos-phatydilinositol 3-kinase-Akt pathway in human cancer. Nat. Rev. Cancer 2: 489–501PubMedCrossRefGoogle Scholar
  37. Weinstein, I.B. 2002. Cancer. Addiction to onco-genes — the Achilles heal of cancer. Science 297: 63–64PubMedCrossRefGoogle Scholar
  38. Yarden, Y., and Sliwkowski, M. 2001. Untangling the ErbB signaling network. Nat. Rev. Mol. Cell Biol. 2: 127–137PubMedCrossRefGoogle Scholar
  39. Yokota, J., and Kohno, T. 2004. Molecular footprints of human lung cancer progression. Cancer Sci. 95: 197–204PubMedCrossRefGoogle Scholar
  40. Zhou, B.B., Peyton, M., He, B., Liu, C., Girard, L., Caudler, E., Lo, Y., Baribaud, F., Mikami, I., Reguart, N., Yang, G., Li, Y., Yao, W., Vaddi, K., Gazdar, A.F., Friedman, S.M., Jablons, D.M., Newton, R.C., Fridman, J.S., Minna, J.D., and Scherle, P.A. 2006. Targeting ADAM-mediated ligand cleavage to inhibit HER3 and EGFR pathways in non-small cell lung cancer. Cancer Cell 10: 39–50PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  1. 1.Karolinska HospitalDePartment of Oncology-Pathology, Cellular and Molecular Pathology, Cancer Center Karolinska, CCK R8:04StockholmSweden

Personalised recommendations