Successful Cancer Treatment: Eradication of Cancer Stem Cells

  • David DingliEmail author
  • Jorge M. Pacheco
Part of the Methods of Cancer Diagnosis, Therapy, and Prognosis book series (HAYAT, volume 2)

The increasing incidence of cancer in many countries is a consequence of our success as a species. Otherwise, cancer would be a rare event. This is no accident, and its justification can be found at the root of the evolution of multicellular organisms. Indeed, the emergence of multicellular organisms required coordination and cooperation between cells that became increasingly specialized resulting in an overall benefit for the organism. Multicellularity also brings with it the risk of cancer, viewed as the deregulated proliferation of a new and particular cell-type population that can threaten the integrity and survival of the organism (Hanahan and Weinberg, 2000).


Acute Myeloid Leukaemia Cancer Stem Cell Acute Myeloid Leukaemia Leukemic Stem Cell JAK2 V617F 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J., and Clarke, M.F. 2003. Prospective identification of tumorigenic breast cancer cells.Proc. Natl. Acad. Sci. USA 100: 3983–3988PubMedCrossRefGoogle Scholar
  2. Belpomme, D., Gauthier, S., Pujade-Lauraine, E., Facchini, T., Goudier, M.J., Krakowski, I., Netter-Pinon, G., Frenay, M., Gousset, C., Marie, F.N., Benmiloud, M., and Sturtz, F. 2000. Verapamil increases the survival of patients with anthracy-cline-resistant metastatic breast carcinoma.Ann. Oncol.11: 1471–1476PubMedCrossRefGoogle Scholar
  3. Bielas, J.H., Loeb, K.R. Rubin, B.P., True, L.D., and Loeb, L.A. 2006. From the cover: Human cancers express a mutator phenotype.Proc. Natl. Acad. Sci. USA 103: 18238–18242PubMedCrossRefGoogle Scholar
  4. Cisternino, S., Mercier, C., Bourasset, F., Roux, F., and Scherrmann, J.M. 2004. Expression, up-regulation, and transport activity of the multi-drug-resistance protein Abcg2 at the mouse blood-brain barrier.Cancer Res.64: 3296–3301PubMedCrossRefGoogle Scholar
  5. Clarke, M.F., Dick, J.E., Dirks, P.B., Eaves, C.J., Jamieson, C.H., Jones, D.L., Visvader, J., Weissman, I.L., and Wahl, G.M. 2006. Cancer Stem Cells—Perspectives on Current Status and Future Directions: AACR Workshop on Cancer Stem Cells.Cancer Res.66: 9339–9344PubMedCrossRefGoogle Scholar
  6. Cohen, K.A., Liu, T.F., Cline, J.M., Wagner, J.D., Hall, P.D., and Frankel, A.E. 2005. Safety evaluation of DT388IL3, a diphtheria toxin/interleukin 3 fusion protein, in the cynomolgus monkey.Cancer Immunol. Immunother.54: 799–806PubMedCrossRefGoogle Scholar
  7. Collins, A.T., Berry, P.A., Hyde, C., Stower, M.J., and Maitland, N.J. 2005. Prospective identification of tumorigenic prostate cancer stem cells.Cancer Res.65: 10946–10951PubMedCrossRefGoogle Scholar
  8. Dalton, W.S., Crowley, J.J., Salmon, S.S., Grogan, T.M., Laufman, L. R., Weiss, G.R., and Bonnet, J.D.1995. A phase III randomized study of oral verapamil as a chemosensitizer to reverse drug resistance in patients with refractory myeloma. A Southwest Oncology Group study.Cancer 75: 815–820PubMedCrossRefGoogle Scholar
  9. Dean, M., Fojo, T., and Bates, S. 2005. Tumour stem cells and drug resistance.Nat. Rev. Cancer 5: 275–284PubMedCrossRefGoogle Scholar
  10. Dingli, D., and Michor, F. 2006. Successful therapy must eradicate cancer stem cells.Stem Cells 24: 2603–2610PubMedCrossRefGoogle Scholar
  11. Dingli, D., Traulsen, A., and Michor, F. 2007a. (A)Symmetric stem cell replication and cancer.PLoS Comput. Biol.3: e53CrossRefGoogle Scholar
  12. Dingli, D., Traulsen, A., and Pacheco, J.M. 2007b. Chronic myeloid leukemia: origin, development, response to therapy, and relapse.Clinical Leukemia(In Press)Google Scholar
  13. Dingli, D., Traulsen, A., and Pacheco, J.M. 2007c. Stochastic dynamics of hematopoietic tumor stem cells.Cell Cycle 6: 441–446Google Scholar
  14. Gale, R.E., Allen, A.J., Nash, M.J., and Linch, D.C. 2006. Long-term serial analysis of X-chrom o -some inactivation patterns and JAK2 V617F mutant levels in patients with essential throm-bocythemia show that minor mutant-positive clones can remain stable for many years.Blood 109: 1241–1243PubMedCrossRefGoogle Scholar
  15. Gu, G., Yuan, J., Wills, M., and Kasper, S. 2007. Prostate cancer cells with stem cell characteristics reconstitute the original human tumor in vivo.Cancer Res.67: 4807–4815PubMedCrossRefGoogle Scholar
  16. Guzman, M.L., Neering, S.J., Upchurch, D., Grimes, B., Howard, D.S., Rizzieri, D.A., Luger, S.M., and Jordan, C.T. 2001a. Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells.Blood 98: 2301–2307CrossRefGoogle Scholar
  17. Guzman, M.L., Upchurch, D., Grimes, B., Howard, D.S., Rizzieri, D.A., Luger, S.M., Phillips, G.L., and Jordan, C.T. 2001b. Expression of tumor-suppressor genes interferon regulatory factor 1 and death-associated protein kinase in primitive acute myelogenous leukemia cells.Blood 97: 2177–2179CrossRefGoogle Scholar
  18. Guzman, M.L., Swiderski, C.F., Howard, D.S., Grimes, B.A., Rossi, R.M., Szilvassy, S.J., and Jordan, C.T. 2002. Preferential induction of apoptosis for primary human leukemic stem cells.Proc Natl Acad Sci USA 99: 16220– 16225PubMedCrossRefGoogle Scholar
  19. Hanahan, D., and Weinberg, R.A. 2000. The hallmarks of cancer.Cell 100: 57–70PubMedCrossRefGoogle Scholar
  20. Holyoake, T., Jiang, X., Eaves, C., and Eaves, A. 1999. Isolation of a highly quiescent subpopula-tion of primitive leukemic cells in chronic mye-loid leukemia.Blood 94: 2056–2064PubMedGoogle Scholar
  21. Huntly, B.J., Shigematsu, H., Deguchi, K., Lee, B.H., Mizuno, S., Duclos, N., Rowan, R., Amaral, S., Curley, D., Williams, I.R., Akashi, K., and Gilliland, D.G. 2004. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors.Cancer Cell 6: 587–596PubMedCrossRefGoogle Scholar
  22. Jamieson, C.H., Ailles, L.E., Dylla, S.J., Muijtjens, M., Jones, C., Zehnder, J.L., Gotlib, J., K. Li, Manz, M.G., Keating, A., Sawyers, C.L., and Weissman, I.L. 2004. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML.N. Engl. J. Med.351: 657–667PubMedCrossRefGoogle Scholar
  23. Jin, L., Hope, K.J., Zhai, Q., Smadja-Joffe, F., and Dick. J.E. 2006. Targeting of CD44 eradicates human acute myeloid leukemic stem cells.Nat. Med.12: 1167–1174PubMedCrossRefGoogle Scholar
  24. Jordan, C.T. 2002. Unique molecular and cellular features of acute myelogenous leukemia stem cells.Leukemia 16: 559–562PubMedCrossRefGoogle Scholar
  25. Jordan, C.T. 2007. The leukemic stem cell.Best Pract. Res. Cl. Ha.20: 13–18CrossRefGoogle Scholar
  26. Jordan, C.T., Upchurch, D., Szilvassy, S.J., Guzman, M.L., Howard, D.S., Pettigrew, A.L., Meyerrose, T., Rossi, R., Grimes, B., Rizzieri, D.A., Luger, S.M., and Phillips, G.L. 2000. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells.Leukemia 14: 1777–1784PubMedCrossRefGoogle Scholar
  27. Kim, C.F., Jackson, E.L., Woolfenden, A.E., Lawrence, S., Babar, I., Vogel, S., Crowley, D., Bronson, R.T., and Jacks, T. 2005. Identification of bronchioalveolar stem cells in normal lung and lung cancer.Cell 121: 823–835PubMedCrossRefGoogle Scholar
  28. Krivtsov, A.V., Twomey, D., Feng, Z., Stubbs, M.C., Wang, Y., Faber, J., Levine, J.E., Wang, J., Hahn, W.C., Gilliland, D.G., Golub, T.R., and Armstrong, S.A. 2006. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9.Nature 442: 818–822PubMedCrossRefGoogle Scholar
  29. Kunkel, T.A., and Bebenek, K. 2000. DNA replication fidelity.Annu. Rev. Biochem.69: 497–529PubMedCrossRefGoogle Scholar
  30. Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., Minden, M., Paterson, B., Caligiuri, M.A., and Dick, J.E. 1994. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice.Nature 367: 645–648PubMedCrossRefGoogle Scholar
  31. Li, C., Heidt, D.G., Dalerba, P., Burant,C.F., Zhang, L., Adsay, V., Wicha, M., Clarke, M.F., and Simeone, D.M. 2007. Identification of pancreatic cancer stem cells.Cancer Res.67: 1030–1037PubMedCrossRefGoogle Scholar
  32. Lopes, J.V., Pacheco, J.M., and Dingli, D. 2007. Mammalian size and the risk of acquiring hemat-opoietic stem cell disorders.Under review Google Scholar
  33. Massey, G.V., Zipursky, A., Chang, M.N., Doyle, J.J., Nasim, S., Taub, J.W., Ravindranath, Y., Dahl, G., and Weinstein, H.J. 2006. A prospective study of the natural history of transient leukemia (TL) in neonates with Down syndrome (DS): Children's Oncology Group (COG) study POG-9481.Blood 107: 4606–4613PubMedCrossRefGoogle Scholar
  34. Matsui, W., Huff, C.A., Wang, Q., Malehorn, M.T., Barber, J., Tanhehco, Y., Smith, B.D., Civin, C.I., and Jones, R.J. 2004. Characterization of clonogenic multiple myeloma cells.Blood 103: 2332–2336PubMedCrossRefGoogle Scholar
  35. Michor, F., Iwasa, Y., and Nowak, M.A. 2006. The age incidence of chronic myeloid leukemia can be explained by a one-mutation model.Proc. Natl. Acad. Sci. USA 103: 14931–14934PubMedCrossRefGoogle Scholar
  36. Millward, M.J., Cantwell, B.M., Munro, N.C., Robinson, A., Corris, P.A., and Harris, A.L. 1993. Oral verapamil with chemotherapy for advanced non-small cell lung cancer: a randomised study.B r. J. Cancer 67: 1031–1035Google Scholar
  37. Monzani, E., Facchetti, F., Galmozzi, E., Corsini, E., Benetti, A., Cavazzin, C., Gritti, A., Piccinini, A., Porro, D., Santinami, M., Invernici, G., Parati, E., Alessandri, G., and La Porta, C.A. 2007. Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential.Eur. J. Cancer 43: 935–946PubMedCrossRefGoogle Scholar
  38. Moore, K.A., and Lemischka, I.R. 2006. Stem cells and their niches.Science 311: 1880–1885PubMedCrossRefGoogle Scholar
  39. Neuzil, J., Stantic, M., Zobalova,R., Chladova, J., Wang, X., Prochazka, L., Dong, L., Andera, L., and Ralph, S.J. 2007. Tumour-initiating cells vs. cancer ‘stem’ cells and CD133: what's in the name?Biochem. Biophys. Res. Commun.355: 855–859PubMedCrossRefGoogle Scholar
  40. Nowak, M.A., Michor, F., and Iwasa, Y. 2003. The linear process of somatic evolution.Proc. Natl. Acad. Sci. USA 100: 14966–14969PubMedCrossRefGoogle Scholar
  41. O'Brien, C.A., Pollett, A., Gallinger, S., and Dick, J.E. 2007. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice.Nature 445: 106–110PubMedCrossRefGoogle Scholar
  42. Olempska, M., Eisenach, P.A., Ammerpohl, O., Ungefroren,H., Fandrich, F., and Kalthoff, H. 2007. Detection of tumor stem cell markers in pancreatic carcinoma cell lines.Hepatobiliary Pancreat. Dis. Int.6: 92–97PubMedGoogle Scholar
  43. Ponta, H., Sherman, L., and Herrlich, P.A. 2003. CD44: from adhesion molecules to signalling regulators.Nat. Rev. Mol. Cell. Biol.4: 33–45PubMedCrossRefGoogle Scholar
  44. Reya, T., Morrison, S.J., Clarke, M.F., and Weissman, I.L. 2001. Stem cells, cancer, and cancer stem cells.Nature 414: 105–111PubMedCrossRefGoogle Scholar
  45. Ricci-Vitiani, L., Lombardi, D.G., Pilozzi, E., Biffoni,M., Todaro, M., Peschle, C., and De Maria, R. 2007. Identification and expansion of human colon-cancer-initiating cells.Nature 445: 111–115PubMedCrossRefGoogle Scholar
  46. Scadden, D.T. 2006. The stem-cell niche as an entity of action.Nature 441: 1075–1079PubMedCrossRefGoogle Scholar
  47. Shackleton, M., Vaillant, F., Simpson, K.J., Stingl, J., Smyth, G.K., Asselin-Labat, M.L., Wu, L., Lindeman, G.J., and Visvader, J.E. 2006. Generation of a functional mammary gland from a single stem cell.Nature 439: 84–88PubMedCrossRefGoogle Scholar
  48. Singh, S.K., Hawkins, C., Clarke, I.D., Squire, J.A., Bayani, J., Hide, T., Henkelman, R.M., Cusimano, M.D., and Dirks, P.B. 2004. Identification of human brain tumour initiating cells.Nature 432: 396–401PubMedCrossRefGoogle Scholar
  49. Sonneveld, P., Suciu, S., Weijermans, P., Beksac, M., Neuwirtova, R., Solbu, G., Lokhorst, H., van der Lelie, J., Dohner, H., Gerhartz, H., Segeren, C.M., Willemze, R., and Lowenberg, B. 2001. Cyclosporin A combined with vincristine, doxo-rubicin and dexamethasone (VAD) compared with VA D alone in patients with advanced refractory multiple myeloma: an EORTC-HOVON randomized phase III study (06914).Br. J. Haematol.115: 895–902PubMedCrossRefGoogle Scholar
  50. Suetsugu, A., Nagaki, M., Aoki, H., Motohashi, T., Kunisada, T., and Moriwaki, H. 2006. Characterization of CD133+ hepatocellu-lar carcinoma cells as cancer stem/progenitor cells.Biochem. Biophys. Res. Commun.351: 820–824PubMedCrossRefGoogle Scholar
  51. Taussig, D.C., Pearce,D.J., Simpson, C., Rohatiner, A.Z., Lister, T.A., Kelly, G., Luongo, J.L., Danet-Desnoyers, G.A., and Bonnet, D. 2005. Hematopoietic stem cells express multiple mye-loid markers: implications for the origin and tar-geted therapy of acute myeloid leukemia.Blood 106: 4086–4092PubMedCrossRefGoogle Scholar
  52. Tomlinson, I., Sasieni, P., and Bodmer, W. 2002. How many mutations in a cancer?Am. J. Pathol.160: 755–758PubMedGoogle Scholar
  53. Tricot, G., Mecucci, C., and Van den Berghe, H. 1986. Evolution of the myelodysplastic syndromes.Br. J. Haematol.63: 609–614PubMedCrossRefGoogle Scholar
  54. Van Rhenen, A., Van Dongen, G.A., Kelder, A., Rombouts, E.J., Feller, N., Moshaver, B., Sigter-van Walsum, M., Zweegman, S., Ossenkoppele, G.J., and Schuurhuis, G.J. 2007. The novel AML stem cell associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells.Blood-3-083048Google Scholar
  55. Vescovi, A.L., Galli, R., and Reynolds, B.A. 2006. Brain tumour stem cells.Nat. Rev. Cancer 6: 425–436PubMedCrossRefGoogle Scholar
  56. Vogelstein, B., and Kinzler, K.W. 2004. Cancer genes and the pathways they control.Nat. Med.10: 789–799PubMedCrossRefGoogle Scholar
  57. Wang, J.C., and Dick, J.E. 2005. Cancer stem cells: lessions from leukemia.Trends Cell Biol.15: 494–501PubMedCrossRefGoogle Scholar
  58. Zucchi, I., Sanzone, S., Astigiano, S., Pelucchi, P., Scotti, M., Valsecchi, V., Barbieri, O., Bertoli, G., Albertini, A., Reinbold, R.A., and Dulbecco, R. 2007. The properties of a mammary gland cancer stem cell.Proc. Natl. Acad. Sci. USA 104: 10476–10481PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  1. 1.Program for Evolutionary DynamicsHarvard UniversityCambridge

Personalised recommendations