Advertisement

Mechanisms of Polyploid Evolution in Fish: Polyploidy in Sturgeons

  • Victor P. Vasil’ev
Part of the Fish & Fisheries Series book series (FIFI, volume 29)

Abstract

Possible ways of polyploid speciation in fish are analysed. According to this analysis, the autopolyploid origin of bisexual species seems to be practically improbable, whereas their allopolyploid origin is quite probable, as it has been confirmed by data on reticular speciation in vertebrates and experimental crossings in fish. The most probable hybrid origin of polyploid sturgeon species is confirmed by various data. The species with 120-chromosomes belong to the ancient tetraploids, but they have passed through significant diploidization that has resulted in their practically functional diploid state. Therefore two scales of ploidy levels should be distinguished in Acipenseriformes: the ‘evolutionary scale’, which presumes diploid-tetraploid-octoploid-12-ploid relationships among these species, and the ‘recent scale’, which presumes diploid-tetraploid-hexaploid relationships. At least three independent polyploidization events have taken place in sturgeon evolution, but in fact there seem to have been many more.

Keywords

Polyploid speciation fish Acipenseriformes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alabyev BY, Gusenkov SV, Najakshin AM, Mechetina LV, Taranin AV. 2000. CD3-epsilon homologues in the chondrostean fish. Acipenser ruthenus. Immunogenetics 51:1012–1020.PubMedCrossRefGoogle Scholar
  2. Aliendorf FW, Thorgaard GH. 1984. Polyploidy and the evolution of salmonid fishes. In: Ryman N, Utter F (eds.), The Evolutionary Genetics of Fishes. University of Washington Press, Seattle, pp. 333–344.Google Scholar
  3. Altukhov YuP, Salmenkova EA, Omelchenko VT. 1997. Population Genetics of Salmonid Fish. Nauka, Moscow [in Russian, English summary].Google Scholar
  4. Andoh T, Nagasawa H, Matsubara T. 2000. Multiple forms of glucagon and insulin in the kaluga sturgeon, Huso dauricus. Peptides 21:1785–1792.PubMedCrossRefGoogle Scholar
  5. Arefjev VA. 1983. Polykaryogrammic analysis of the ship Acipenser nudiventris Lovetsky (Acipenseridae, Chondrostei). Voprosy Ikhtiol 23:209–218 [in Russian].Google Scholar
  6. Behnke RJ. 1992. Native trout of western North America. Am Fish Soc Monogr 6:275.Google Scholar
  7. Birstein VJ. 2005. Phylogeny and evolution of Acipenseriformes: new molecular and genetic data create new puzzles. In: Gall JaM, Kolchisky AI (eds.) Evolutionary Biology: History and Theory. SPb IH RAS “Nestor-Istoriya”, S-Petersburg 3, pp 231–269.Google Scholar
  8. Birstein VJ, DeSalle R. 1998. Molecular phylogeny of Acipenserinae. Mol Phylogenet Evol 9(1):141–155.PubMedCrossRefGoogle Scholar
  9. Birstein VJ, Poletaev AI, Goncharov BF. 1993. The DNA content in Eurasian sturgeon species determined by flow cytometry. Cytometry 14:377–383.PubMedCrossRefGoogle Scholar
  10. Birstein VJ, Hanner R, DeSalle R. 1997. Phylogeny of the Acipenseriformes: cytogenetic and molecular approaches. Environ Biol Fish 48:127–155.CrossRefGoogle Scholar
  11. Birstein VJ, Doukakis P, DeSalle R. 2000. Polyphyly of mtDNA lineages in the Russian sturgeon, Acipenser gueldenstaedtii: forensic and evolutionary implications. Conserv Genet 1:81–88.CrossRefGoogle Scholar
  12. Birstein VJ, Ruban GI, Ludwig A, Doukakis P, DeSalle R. 2005. The enigmatic Caspian Sea Russian sturgeon: how many cryptic forms does it contain? Syst Biodiver 3(2):203–218.CrossRefGoogle Scholar
  13. Blacklidge KH, Bidwell CA. 1993. Three ploidy levels indicated by genome quantification in Acipenseriformes of North America. J Hered 84:427–430.Google Scholar
  14. Carlson DM, Kettler MK, Fisher SE, Whitt GS. 1982. Low genetic variability in paddlefish populations. Copeia 3:721–725.CrossRefGoogle Scholar
  15. Cherfas NB. 1966. Analyses of meiosis in unisexual and bisexual forms of the crucian carp. Trudy Vniiprkh 14:63–82 [in Russian].Google Scholar
  16. Cherfas NB, Emelyanova OV. 1986. The role of the distant hybridization in the origin of all-female complexes in fish (the results of investigations in natural populations and crossing experiments). In: Strunnikov VA (ed.), Biology of Development and Managements in Heritability. Nauka, Moscow, pp. 82–104 [in Russian].Google Scholar
  17. Cherfas NB, Gomelskyi BI, Emelyanova OV. 1981. Triploidy in back-cross hybrids between crucian carp and common carp. Genetica 17(6): 1136–1139 [in Russian].Google Scholar
  18. Chicca M, Suciu R, Ene C, Lanfredi M, Congiu L, Leis M, Tagliavini J, Rossi R, Fontana F. 2002. Karyotype characterization of the stellate sturgeon, Acipenser stellatus by chromosome banding and fluorescent in situ hybridization. J Appl Ichthyol 18:298.CrossRefGoogle Scholar
  19. Chourrout D, Chevassus B, Krieg F et al. 1986. Production of second generation triploid and tetraploid rainbow trout by mating tetraploid males and diploid females—potential of tetraploid fish. Theor Appl Genet 72(2): 193–206.CrossRefGoogle Scholar
  20. Dannewitz J, Jannson H. 1996. Triploid progeny from a female Atlantic salmon ?D7; brown trout hybrid backcrossed to a male brown trout. J Fish Biol 48(1): 144–146.Google Scholar
  21. Dawley RM. 1987. Hybridization and polyploidy in a community of three sunfish species (Pisces: Centrarchidae). Copeia (2):326–335.Google Scholar
  22. Dawley RM. 1992. Clonal hybrids of the common laboratory fish Fundulus heteroclitus. Proc Natl Acad Sci USA 89:2485–2488.PubMedCrossRefGoogle Scholar
  23. Dawley RM, Graham JH, Schultz RJ. 1985. Triploid progeny of pumpkinseed × green sunfish hybrids. J Hered 76:251–257.Google Scholar
  24. Dingerkus G, Howell WM. 1976. Karyotypic analysis and evidence of tetraploidy in the North American paddlefish, Polyodon spathula. Science 194:842–844.PubMedCrossRefGoogle Scholar
  25. Dyban AP, Baranov VS. 1978. Cytogenetics of Development in Mammals. Nauka, Moscow, 216 pp [in Russian].Google Scholar
  26. Ferris SD, Whitt GS. 1980. Genetic variability in species with extensive gene duplication: the tetraploid catostomid fishes. Am Nat 115(5):650–666.CrossRefGoogle Scholar
  27. Fontana F. 1994. Chromosomal nucleolar organizer regions in four sturgeon species as markers of karyotype evolution in Acipenseriformes (Pisces). Genome 37:888–892.PubMedGoogle Scholar
  28. Fontana F, Colombo G. 1974. The chromosomes of Italian sturgeons. Experientia 30:739–742.PubMedCrossRefGoogle Scholar
  29. Fontana F, Lanfredi M, Rossi R, Bronzi P, Arlati G. 1996. Karyotypic characterization of Acipenser gueldenstaedti with C-, AgNO3, and fluorescence banding techniques. Ital J Zool 63:113–118.CrossRefGoogle Scholar
  30. Fontana F, Rossi R, Lanfredi M, Arlati G, Bronzi P. 1997. Cytogenetic characterization of cell lines from three sturgeon species. Caryologia 50:91–95.Google Scholar
  31. Fontana F, Tagliavini J, Congiu L, Lanfredi M, Chicca M, Laurente C, Rossi R. 1998. Karyotypic characterization of the great sturgeon, Huso huso, by multiple staining techniques and fluorescent in situ hybridization. Mar Biol 132:495–501.CrossRefGoogle Scholar
  32. Fontana F, Tagliavini J, Congiu L. 2001. Sturgeon genetics and cytogenetics: recent advancements and perspectives. Genetica 111:359–373.PubMedCrossRefGoogle Scholar
  33. Fontana F, Lanfredi M, Congiu L, Leis M, Chicca M, Rossi R. 2003. Chromosomal mapping of 18S-28S and 5 rRNA genes by two-colour fluorescent in situ hybridization in six sturgeon species. Genome 46:473–477.PubMedCrossRefGoogle Scholar
  34. Fontana F, Bruch RM, Binkowski FP, Lanfredi M, Chicca M, Beltrami N, Congiu L. 2004. Karyotype characterization of the lake sturgeon, Acipenser fulvescens (Rafinesque 1817) by chromosome banding and fluorescent in situ hybridization. Genome 47(4):742–746.PubMedCrossRefGoogle Scholar
  35. Golovinskaya KA. 1969. Artificial gynogenesis in carp. In: Genetics, Selection and Hybridization in Fishes. Nauka, Moscow, pp. 79–84 [in Russian].Google Scholar
  36. Golubtsov AS, Krysanov EY. 1993. Karyological study of some cyprinid species from Ethiopia. The ploidy differences between large and small Barbus of Africa. J Fish Biol 42:445–455.CrossRefGoogle Scholar
  37. Gomelskyi BI, Cherfas NB, Emelyanova OV. 1985. On capacity of crucian carp × common carp hybrids to produce diploid sperm. Dokl AN USSR 282(5): 1255–1258 [in Russian].Google Scholar
  38. Grant V. 1977. Organismic Evolution. W.H. Freeman, San Francisco.Google Scholar
  39. Haldane JBS. 1922. Sex ratio and unisexual sterility in hybrid animals. J Genet 12:101–109.CrossRefGoogle Scholar
  40. De la Herrán R, Fontana F, Lanfredi M, Congiu L, Leis M, Rossi R, Rejón MR, Garrido-Ramos MA. 2001. Slow rates of evolution and sequence homogenization in an ancient satellite DNA family of sturgeons. Mol Biol Evol 18(1):432–436.Google Scholar
  41. Hett AK, Ludwig A. 2005. SRY-related (Sox) genes in the genome of European Atlantic sturgeon (Acipenser sturio). Genome 48:181–186.PubMedGoogle Scholar
  42. Hunter GA, Donaldson EM, Goetz FW, Edgell PR. 1982. Production of all-female and sterile groups of coho salmon (Oncorhynchus kisutch) and experimental evidence for male heterogamety. Trans Am Fish Soc 111(3):367–372.CrossRefGoogle Scholar
  43. Johnston R, Simpson TH, Walker AF. 1979. Sex reversal in salmonid culture. 3. The production and performance of all-female populations of brook trout. Aquaculture 18(3):241–252.CrossRefGoogle Scholar
  44. Johnson KR, Wright JE, May B. 1987. Linkage relationships reflecting ancestral tetraploidy in salmonid fish. Genetics 116:579–591.PubMedGoogle Scholar
  45. Kawamura T. 1984. Review polyploidy in amphibians. Zoll Sci 1(1):1–15.Google Scholar
  46. Kim JB, Gadsboll V, Whittaker J, Barton BA, Conlon JM. 2000. Gastroenteropancreatic hormones (insulin, glucagon, somatostatin, and multiple forms of PYY) from the pallid sturgeon, Scaphirhynchus albus (Acipenseriformes). Gen Comp Endocrinol 120:535–563.CrossRefGoogle Scholar
  47. Kim DS, Nam YK, Noh JK, Park CH, Chapman FA. 2005. Karyotype of North American short-nose sturgeon Acipenser brevirostrum with the highest chromosome number in the Acipenseriformes. Ichthyol Res 52:94–97.CrossRefGoogle Scholar
  48. Kurita J, Oshiro T, Takashima F, Sakaizumi M. 1995. Cytogenetic studies on diploid and triploid oogenesis in interspecific hybrid fish between Oryzias latipes and O. curvinotus. J Exp Zool 273:234–241.CrossRefGoogle Scholar
  49. Lowcock LA, Licht LE, Bogart JP. 1987. Nomenclature in hybrid complexes of Ambystoma (Urodela: Ambystomatidae): No case for the erection of hybrid ‘species’. Syst Zool 36:328–336.CrossRefGoogle Scholar
  50. Ludwig A, Belfiore NM, Pitra C, Svirsky V, Jenneckens I. 2001. Genome duplication events and functional reduction of ploidy levels in sturgeon (Acipenser, Huso and Scaphirhynchus). Genetics 158:1203–1215.PubMedGoogle Scholar
  51. Ludwig A, Congiu L, Pitra C, Fickel J, Gessner J, Fontana F, Patarnello T, Zane L. 2003. Nonconcordant evolutionary history of maternal and paternal lineages in Adriatic sturgeon. Mol Ecol 12:3253–3264.PubMedCrossRefGoogle Scholar
  52. Mayr E. 1963. Animal Species and Evolution. Harvard University Press, Cambridge, MA.Google Scholar
  53. Monin AC. 1977. The History of the Earth. Nauka, Leningrad [in Russian].Google Scholar
  54. Muller HJ. 1925. Why polyploidy is rarer in animals than in plants. Am Nat 59:346–353.CrossRefGoogle Scholar
  55. Nikoljukin NI. 1972. Distant Hybridization in Fish. Pischevaya promyshlennost, Moscow [in Russian].Google Scholar
  56. Nurelli M. 1998. The causes of Haldane’s rule. Science 282(5390):889–890.CrossRefGoogle Scholar
  57. Ohno S. 1970. Evolution by Gene Duplication. Springer-Verlag, Berlin-Heidelberg-New York.Google Scholar
  58. Ohno S, Muramoto J, Stenius C, Christian L, Kittrel WA, Atkin NB. 1969. Microchromosomes in holocephalian, chondrostean and holostean fishes. Chromosoma 26:35–40.PubMedCrossRefGoogle Scholar
  59. Ojima Y, Takai A. 1979. The occurrence of polyploid in the Japanese common loach Misgurnus anguillicaudatus. Proc Jpn Acad Ser B 55(10):487–491.CrossRefGoogle Scholar
  60. Ojima Y, Hayashi M, Ueno K. 1975. Triploidy appeared in the back-cross offspring from funa-carp crossing. Proc Jpn Acad 51(8):702–706.Google Scholar
  61. Orlov VN, Bulatova NSh. 1983. Comparative Cytogenetics and Karyosystematics in Mammals. Nauka, Moscow [in Russian].Google Scholar
  62. Osinov AG, Lebedev VS. 2004. Salmonid fish (Salmonidae, Salmoniformes): position in the suborder Protacanthopterygii, basic evolutionary history, molecular dating. Voprosy Ikhtiol 44(6):738–765 [in Russian].Google Scholar
  63. Raicu P, Taisescu E. 1972. Misgurnus fossilis, a tetraploid fish species. J Hered 73(a):92–94.Google Scholar
  64. Robles F, de la Herrán R, Ludwig A, Rejón GR, Rejón MR, Garrido-Ramos MA. 2005. Genomic organization and evolution of the 5S ribosomal DNA in the ancient fish sturgeon. Genome 48:18–28.PubMedCrossRefGoogle Scholar
  65. Ryabova GD, Kutergina IG. 1990. Analysis of allozyme variability in the stellate sturgeon, Acipenser stellatus (Pallas) from the northern Caspian Sea. Genetica 26:902–911 [in Russian, with English summary].Google Scholar
  66. Saitoh K, Takai A, Ojima Y. 1984. Chromosomal study on the three local races of the striated spined loach (Cobitis taenia striata). Proc Jap Acad 60(Ser B):187–190.CrossRefGoogle Scholar
  67. Saitoh K, Kobayashi T, Ueshima R, Numachi KI. 2000. Analyses of mitochondrial and satellite DNKs on spined loaches of the genus Cobitis from Japan have revealed relationships among population of three diploid-tetraploid complexes. Folia Zool 49(Suppl.):3–7.Google Scholar
  68. Sakaizumi M, Shimizu Y, Matsuzaki T, Hamaguchi S. 1993. Unreduced diploid eggs produced by interspecific hybrids between Oryzias latipes and O. curvinotus. J Exp Zool 266:312–318.CrossRefGoogle Scholar
  69. Smith JM. 1978. The Evolution of Sex. Cambridge University Press, Cambridge.Google Scholar
  70. Svärdson G. 1945. Chromosome studies on Salmonidae. Rep Inst Freshwater Res Drottingholm 23:1–151.Google Scholar
  71. Thorgaard GH. 1977. Heteromorphic sex chromosomes in male rainbow trout. Science 196:900–902.PubMedCrossRefGoogle Scholar
  72. Thorgaard GH. 1978. Sex chromosomes in the sockeye salmon: A Y-autosome fusion. Can J Genet Cytol 20:349–354.PubMedGoogle Scholar
  73. Trabucchi M, Tostivint H, Lihrmann I, Sollars C, Vallarino M, Dolres RM, Vaudry H. 2002. Polygenic expression of somatostatin in the sturgeon Acipenser transmontanus: molecular cloning and distribution of the mRNAs encoding two somatostatin precursors. J Comp Neurol 443:332–345.PubMedCrossRefGoogle Scholar
  74. Ueno K, Ojima Y 1976. Diploid-tetraploid complexes in the genus Cobitis (Cobitidae, Cyprinidae). Proc Jpn Acad 52(8):446–449.Google Scholar
  75. Uyeno T, Smith GB. 1972. Tetraploid origin of the karyotype of catostomid fishes. Science 175(4022):644–646.PubMedCrossRefGoogle Scholar
  76. Van Eenennaam AL, Van Eenennaam JP, Medrano JF, Doroshov SI. 1996. Rapid verification of meiotic gynogenesis and polyploidy in white sturgeon (Acipenser transmontanus Richardson). Aquaculture 147:177–189.CrossRefGoogle Scholar
  77. Van Eenennaam AL, Murray JD, Medrano JF. 1998a. Synaptonemal complex—analysis in spermatocytes of white sturgeon, Acipenser transmontanus Richardson (Pisces, Acipenseridae), a fish with a very high chromosome number. Genome 41(1):51–61.CrossRefGoogle Scholar
  78. Van Eenennaam AL, Murray JD, Medrano JF. 1998b. Mitotic analysis of the North-American White sturgeon, Acipenser transmontanus Richardson (Pisces, Acipenseridae), a fish with a very high chromosome number. Genome 41:266–271.CrossRefGoogle Scholar
  79. Vasetskyi SG. 1977. IV. Meiotic divisions. In: Detlaf TA (ed.), Problems of Biology of Development. Recent Problems of Oogenesis. Nauka, Moscow, pp. 145–172 [in Russian].Google Scholar
  80. Vasil’ev VP. 1977. On polyploidy in fish and some problems of karyotype evolution in salmonids. Zhurn Obtschei Biolog 38(3):380–392 [in Russian].Google Scholar
  81. Vasil’ev VP. 1984. Several aspects of chromosome differentiation in fish. In: Biological Bases for Fisheries: Genetics and Selection. Nauka, Leningrad, pp. 166–180 [in Russian].Google Scholar
  82. Vasil’ev VP. 1985. Evolutionary Karyology of Fishes. Nauka, Moscow, 300 pp [in Russian].Google Scholar
  83. Vasil’ev VP. 1999. Polyploidization by reticular speciation in Acipenseriform evolution: a working hypothesis. J Appl Ichthyol 15:29–31.CrossRefGoogle Scholar
  84. Vasil’ev VP, Vasil’eva ED. 1982. A new diploid-polyploid complex in fishes. Dokl AN USSR 266:250–252 [in Russian].Google Scholar
  85. Vasil’ev VP, Sokolov LI, Serebryakova EV. 1980. Karyotypes of the Siberian sturgeon, Acipenser baeri, of the Lena River and some aspects of karyotype evolution in Acipenseriformes. Voprosy Ikhtiol 20:814–822 [in Russian].Google Scholar
  86. Vasil’ev VP, Vasil’eva ED, Osinov AG. 1989. Evolution of a diploid-triploid-tetraploid complex in fishes of the genus Cobitis (Pisces, Cobitidae). In: Dawley RM, Bogart JP, (eds.) Evolution and Ecology of Unisexual Vertebrates. Bulletin 466. New York State Museum. Albany. N.Y. p 153–169.Google Scholar
  87. Vasil’ev VP, Osinov AG, Vasil’eva ED. 1991. On the problem of reticular speciation in vertebrates: diploid-triploid-tetraploid complex in genus Cobitis (Cobitidae). V The origin of even-polyploid species. Voprosy Ikhtiol 31(2):202–215 [in Russian].Google Scholar
  88. Vasil’ev VP, Lebedeva EB, Vasil’eva ED, Levenkova ES, Ryskov AP. 2005. A unique diploid-tetraploid unisexual—bisexual complex in fish (Pisces, Cobitidae). Dokl RAS 401(4):559–561 [in Russian].Google Scholar
  89. Vasil’eva ED, Vasil’ev VP. 1998. Sibling-species in genus Cobitis (Cobitidae). 1. Cobitis rossome-ridionalis sp. nova. Voprosy Ikhtiol 38(5):604–614 [in Russian].Google Scholar
  90. Vrijenhoek RC. 1989. Genetic and ecological constraints on the origins and establishment of unisexual vertebrates. In: Dawley RM, Bogart JP (eds.), Evolution and Ecology of Unisexual Vertebrates, Bulletin 466. New York State Museum, Albany, NY, pp. 24–31.Google Scholar
  91. Vrijenhoek RC, Dawley RM, Cole CJ, Bogart JP. 1989. A list of the known unisexual vertebrates. In: Dawley RM, Bogart JP (eds.), Evolution and Ecology of Unisexual Vertebrates, Bulletin 466. New York State Museum, Albany, NY, pp. 19–23.Google Scholar
  92. White MJD. 1946. The evidence against polyploidy in sexually reproducing animals. Am Nat 80:610–618.CrossRefGoogle Scholar
  93. Yamamoto TO, Kajishima T. 1968. Sex hormone induction of sex reversal in the goldfish and evidence for male heterogamety. J Exp Zool 168:215–222.PubMedCrossRefGoogle Scholar
  94. Yin H-B, Sun Z-W, Sun D-J. 2004. Comparative study of DNA-content in five cultivated sturgeon species and kaluga sturgeon. J Shanghai Fish Univ 13(2): 111–114 [in Chinese].Google Scholar
  95. Yu X, Zhou T, Li Yu, Li K, Zhou M. 1989. Chromosomes of Chinese Fresh-water Fishes. Science Press, Beijing, China, 179 pp [in Chinese].Google Scholar
  96. Zan RG, Song Z, Liu WG. 1986. Studies on karyotype and nuclear DNA contents of some cyprinoid fishes, with notes on fish polyploids in China. In: Uyeno T, Arai R, Taniuchi T, Matsuura K (eds.), Indo-Pacific Fish Biology. Proceedings of the Second International Conference on Indo-Pacific Fishes. The Ichthyological Society of Japan, Tokyo, pp. 877–885.Google Scholar
  97. Zhang S-M, Yan Y, Deng H, Wang D-Q, Wei Q-W, Wu O-J. 1999. Genome size ploidy characters of several species of sturgeons and paddlefishes with comment on cellular evolution of Acipenseriformes. Acta Zool Sin 45:200–206.Google Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  • Victor P. Vasil’ev
    • 1
  1. 1.Institute of Problems of Ecology and Evolution RASMoscowRussia

Personalised recommendations