Advertisement

Regular Algorithms for the Few-Body Problem

  • Seppo Mikkola
Part of the Lecture Notes in Physics book series (LNP, volume 760)

encounters of just two bodies. Most classical numerical integration methods lose precision for such situations due to the 1/r2 singularity of the mutual force of the two bodies. In a close encounter the relative motion of the participating bodies is so fast that, for a brief moment, the rest of the system can be considered frozen. Consequently, the most important feature of a regularizing algorithm must be that it can handle reliably the perturbed two-body problem. There are two basically different types of methods available: Coordinate and time transformations and algorithms that produce regular results without coordinate transformation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarseth S. J., 2003, Gravitational N-Body Simulations. Cambridge University Press, CambridgezbMATHCrossRefGoogle Scholar
  2. Bulirsch R., Stoer J., 1966, Num. Math., 8, 1Google Scholar
  3. Gragg W. B., 1964, Ph.D. thesis, University of California, Los AngelesGoogle Scholar
  4. Gragg W. B., 1965, SIAM J. Numer. Anal., 2, 384MathSciNetADSGoogle Scholar
  5. Heggie D. C., 1974, Celes. Mech., 10, 217zbMATHCrossRefADSGoogle Scholar
  6. Kustaanheimo P., Stiefel E., 1965, J. Reine Angew. Math., 218, 204zbMATHMathSciNetGoogle Scholar
  7. Levi-Civita T., 1920, Acta Math., 42, 99CrossRefMathSciNetGoogle Scholar
  8. Mikkola S., Aarseth S. J., 1993, Celes. Mech. Dyn. Astron., 57, 439zbMATHCrossRefADSMathSciNetGoogle Scholar
  9. Mikkola S., Aarseth S., 2002, Celes. Mech. Dyn. Astron., 84, 343zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. Mikkola S., Merritt D., 2006, MNRAS, 372, 219CrossRefADSGoogle Scholar
  11. Mikkola S., Merritt D., 2008, AJ, 135, 2398CrossRefADSGoogle Scholar
  12. Mikkola S., Tanikawa K., 1999a, MNRAS, 310, 745CrossRefADSGoogle Scholar
  13. Mikkola S., Tanikawa K., 1999b, Celes. Mech. Dyn. Astron., 74, 287zbMATHCrossRefADSGoogle Scholar
  14. Press W. H., Flannery B. P., Teukolsky S. A., Wetterling W. T., 1986, Numerical Recipes. Cambridge University Press, CambridgeGoogle Scholar
  15. Preto M., Tremaine S., 1999, AJ, 118, 2532CrossRefADSGoogle Scholar
  16. Soffel M. H., 1989, Relativity in Astrometry, Celestial Mechanics and Geodesy. Springer-Berlin, p. 141Google Scholar
  17. Stiefel E. L., Scheifele G., 1971, Linear and Regular Celestial Mechanics. Springer, BerlinzbMATHGoogle Scholar
  18. Yoshida H., 1990, Phys. Lett. A, 150, 262CrossRefADSMathSciNetGoogle Scholar
  19. Zare K., 1974, Celes. Mech., 10, 207zbMATHCrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Seppo Mikkola
    • 1
  1. 1.Tuorla ObservatoryUniversity of TurkuFinland

Personalised recommendations