Introduction to Interfaces and Diffusion

  • P. Wynblatt
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

This chapter covers selected fundamental topics in Materials Science, with the purpose of introducing certain concepts that will serve as a foundation for other chapters in this volume. The topics addressed include: interfacial Gibbsian thermodynamics, with special emphasis on adsorption (or interfacial segregation) phenomena; statistical thermodynamic treatments of interfacial segregation, with examples of the relationship between interfacial composition and thermodynamic properties of two-component materials, as well as the consequences of variations in interfacial composition on interfacial energy; anisotropy of interfacial energy and the effects of composition thereon; grain boundary structure and energetics; interfacial equilibrium in solid-vapor, solid-liquid and solid-solid systems; and finally a brief overview of diffusion in solid metals which introduces both the mathematical framework as well as atomistic aspects of diffusion mechanisms.

Keywords

Interfacial thermodynamics adsorption segregation interfacial energy and anisotropy grain boundaries interfacial vector equilibrium diffusion in metals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bollmann W., 1970, Crystal Defects and Crystalline Interfaces, Springer-Verlag, New York, pp. 143-185.Google Scholar
  2. Chatain, D., Ghetta, V., and Wynblatt, P., 2004, Equilibrium shape of copper crystals grown on sapphire, Interface Sci. 12:7-18.CrossRefGoogle Scholar
  3. Chatain, D., Wynblatt, P., and Rohrer, G. S., 2005, Equilibrium crystal shape of Bi-saturated Cu crystals at 1223 K, Acta Mater. 53:4057-4064.CrossRefGoogle Scholar
  4. Chatain, D., and Ghetta, V., 2007, Wetting at high temperature, in THIS VOLUMEGoogle Scholar
  5. Crank, J., 1975, The Mathematics of Diffusion, 2nd ed, Oxford University Press, Oxford.Google Scholar
  6. Defay, R., Prigogine, I., Bellmans, A., and Everett, D. H., 1966, Surface Tension and Adsorption, Wiley, New York, pp. 158-197.Google Scholar
  7. Fowler, R. H., and Guggenheim, E. A., 1939, Statistical Thermodynamics, Macmillan, New York, pp. 429-40.MATHGoogle Scholar
  8. Friedel, J., 1954, Advan. Phys. 3:446-507.CrossRefADSGoogle Scholar
  9. Gibbs, J.W., 1961, The Scientific Papers of J. Willard Gibbs, Dover, New York, vol. 1, pp. 219-331.Google Scholar
  10. Heyraud, J. C., and Metois, 1983, J. J., Equilibrium shape and temperature: Lead on graphite, Surface Sci. 128:334-342.Google Scholar
  11. Hirth, J. P., 1965, The kinetic and thermodynamic properties of surfaces, in: Energetics in Metallurgical Phenomena Vol II, W. M. Mueller ed., Gordon and Breach, New York, pp. 1-52.Google Scholar
  12. Hirth, J. P., 1973, Thermodynamics of surfaces, in: Structure and Properties of Metal Surfaces, Honda Memorial Series in Materials Science No.1, Maruzen Co. Ltd., Tokyo, pp. 10-33.Google Scholar
  13. Hondros, E. D., and Seah, M. P., 1977, The theory of grain boundary segregation in terms of surface adsorption analogues, Metall. Trans. 8A:1363-1371.Google Scholar
  14. Lee, Y. W., and Aaronson, H. I., 1980a, Surface concentration profile and surface energy in binary alloys, Surf. Sci. 95:227-244.CrossRefADSGoogle Scholar
  15. Lee, Y. W., and Aaronson, H. I., 1980b, Anisotropy of coherent interphase boundary energy, Acta Metall., 28:539-548.CrossRefGoogle Scholar
  16. Lopez, G. A., Mittemeijer, E. J., and Straumal, B. B., 2004, Grain boundary wetting by a solid phase; microstructural development in a Zn-5 wt% Al alloy, Acta Mater. 52:4537-4545.CrossRefGoogle Scholar
  17. Luo, J., 2007, Stabilization of Nanoscale Quasi-Liquid Interfacial Films in Inorganic Materials: A Review and Critical Assessment, Crit. Rev. Sol. State Mater. Sci. 32: 67-109.CrossRefGoogle Scholar
  18. MacKenzie, J. K., Moore, A. J. W., and Nicholas, J. F., 1962, Bonds broken at atomically flat crystal surfaces, J. Phys. Chem. Solids 23:185-205.CrossRefADSGoogle Scholar
  19. McLean D., 1957, Grain Boundaries in Metals, Oxford Press, London, pp. 116-122.Google Scholar
  20. Mullins, W. W., 1963, Solid surface morphologies governed by capillarity, In: Metal Surfaces: Structure, energetics and kinetics , W. D. Robertson and N. A. Gjostein, eds., ASM, Cleveland, pp. 17-66.Google Scholar
  21. Ono, S., and Kondo, S., 1960, Article in: Encyclopedia of Physics, vol. X, S. Flugge, ed., Springer, Berlin, pp. 134-277.Google Scholar
  22. Pang, Y., 2005, Relation between grain boundary segregation and plane orientation in Nbdoped TiO2, Ph.D. Thesis, Carnegie Mellon University, Pittsburgh.Google Scholar
  23. Wolf, D., 1990, Structure-energy correlation for grain boundaries in FCC metals. IV. Asymmetrical twist (general) boundaries, Acta Metall. Mater. 38:791-798CrossRefGoogle Scholar
  24. Wynblatt, P. and Chatain, D., 2006, Anisotropy of Segregation at grain boundaries and surfaces, Metall. Mater. Trans. 37A:2595-2620.CrossRefGoogle Scholar
  25. Wynblatt, P., and Ku, R. C., 1977, Surface energy and solute strain energy effects in surface segregation, Surface Sci. 65:511-531.CrossRefADSGoogle Scholar
  26. Wynblatt, P., and Ku, R. C., 1979, Surface segregation in alloys, In: Interfacial Segregation, W. C. Johnson and J. M. Blakely eds., ASM, Metals Park, OH, pp. 115-136.Google Scholar
  27. Wynblatt, P., and Shi, Z., 2005, Relation between grain boundary segregation and grain boundary character in fcc alloys, J. Mater. Sci. 40:2765-2773.CrossRefADSGoogle Scholar
  28. Wynblatt, P. and Takashima, M., 2001, Correlation of grain boundary character with wetting behavior, Interface Sci., 2001, 9:265-273.CrossRefGoogle Scholar
  29. Wynblatt, P., Saùl, A., and Chatain, D., 1998, The effects of prewetting and wetting transitions on the surface energy of liquid alloys, Acta Mater. 46:2337-47.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • P. Wynblatt
    • 1
  1. 1.Department of Materials Science and EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations