Advertisement

A Computational Approach to the Control of Voluntary Saccadic Eye Movements

  • Jeremy Fix
Conference paper

Abstract

We present a computational model of how several brain areas involved in the control of voluntary saccadic eye movements might cooperate. This model is based on anatomical and physiological considerations and lays the emphasis on the temporal evolution of the activities in each of these areas, and their potential functional role in the control of saccades.

Keywords

Superior Colliculus Visual Stimulation Antisaccade Task Biological Cybernetic Potential Functional Role 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goldberg, M.: The control of gaze. In: Kandel, E.R., Schwartz, J.H., Jessell, T.M., Principles of Neural Science. The McGraw-Hill Companies, Chapter 39, (2000) 782–800.Google Scholar
  2. 2.
    Krauzlis, R.: The control of voluntary eye movements: new perspectives. The Neuroscientist 11 (2005) 124–137.Google Scholar
  3. 3.
    Cohen, Y., Andersen, R.: Multimodal spatial representations in the primate parietal lobe. In: Spence, C., Driver, J., Crossmodal Space and Crossmodal Attention. Chapter 5, Oxford University Press Inc., USA (2004) 99–122.Google Scholar
  4. 4.
    Pouget, A., Deneve, S., Duhamel, J.: A computational perspective on the neural basis of multisensory spatial representations. Nature Reviews Neuroscience 3 (2002) 741–747.Google Scholar
  5. 5.
    Bruce, C., Goldberg, M.: Primate frontal eye fields: I. single neurons discharging before saccades. Journal of Neurophysiology 53 (1985) 603–635.Google Scholar
  6. 6.
    Coe, B., Tomihara, K., Matsuzawa, M., Hikosaka, O.: Visual and anticipatory bias in three cortical eye fields of the monkey during an adaptive decision-making task. The Journal of Neuroscience 22 (2002) 5081–5090.Google Scholar
  7. 7.
    Amador, N., Schlag-Rey, M., Schlag, J.: Reward-predicting and reward-detecting neuronal activity in the primate supplementary eye field. Journal of Neurophysiology 84 (2000) 2166–2170.Google Scholar
  8. 8.
    Schlag, J., Schlag-Rey, M.: Evidence for a supplementary eye field. Journal of Neurophysiology 57 (1987) 179–200.Google Scholar
  9. 9.
    Martinez-Trujillo, J., Medendorp, W., Wang, H., Crawford, J.: Frames of reference for eye-head gaze commands in primate supplementary eye fields. Neuron 44 (2004) 1057–1066.Google Scholar
  10. 10.
    Funahashi, S., Bruce, C., Goldman-Rakic, P.: Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic scotomas. The Journal of Neuroscience 13 (1993) 1479–1497.Google Scholar
  11. 11.
    Amari, S.: Dynamical study of formation of cortical maps. Biological Cybernetics 27 (1977) 77–87.Google Scholar
  12. 12.
    Taylor, J.: Neural bubble dynamics in two dimensions. Biological Cybernetics 80 (1999) 5167–5174.Google Scholar
  13. 13.
    Fix, J., Vitay, J., Rougier, N.: A distributed computational model of spatial memory anticipation during a visual search task. In: Butz, M.V., Sigand, O., Pezzulo, G., Baldassarre, G. (eds.): ABiALS. Springer Verlag, LNAI 4520 (2006) 170–188.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jeremy Fix
    • 1
  1. 1.Loria Campus ScientifiqueFrance

Personalised recommendations