Oscillatory Event Synchrony During Steady State Visual Evoked Potentials

  • François B. Vialatte
  • Justin Dauwels
  • Tomasz M. Rutkowski
  • Andrzej Cichocki


In this paper we study the dynamics of distributed neuronal assemblies, through the event synchrony of EEG oscillatory bursts. We recorded EEG signals before, during and after steady-state visual evoked potentials (SSVEP) in medium (16 Hz) and high frequency (32 Hz) ranges. The time-frequency oscillatory events are extracted using bump modeling. Thereafter, the recently introduced stochastic event synchrony (SES) method is applied to compare these patterns between brain areas. Significant effects are shown, demonstrating that not only the background activity is affected by flickering stimulation, but also oscillatory patterns.


Visual Evoke Potential Oscillatory Pattern Oscillatory Event Event Synchrony Neuronal Assembly 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cosmelli, D., Lachaux, J.P., Thompson, E.: Neurodynamical approaches to consciousness. In Zelazo, P.D., Moscovitch, M., Thompson, E. (eds.): The Cambridge Handbook of Consciousness. Cambridge University Press, Cambridge (2007).Google Scholar
  2. 2.
    Varela, F., Lachaux, J.P., Rodriguez, E., Martinerie, J.: The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2 (2001) 229–239.PubMedCrossRefGoogle Scholar
  3. 3.
    Regan, D.: Human Brain Electrophysiology: Evoked Potentials and Evoked Magnetic Fields in Science and Medicine. Elsevier, New York (1989).Google Scholar
  4. 4.
    Tallon-Baudry, C., Bertrand, O., Delpuech, C., Pernier, J.: Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human. J. Neurosci. 16 (1996) 4240–4249.PubMedGoogle Scholar
  5. 5.
    Ohara, S., Crone, N.E., Weiss, N., Lenz, F.A.: Attention to a painful cutaneous laser stimulus modulates electrocorticographic event-related desynchronization in humans. Clin. Neurophysiol. 115 (2004) 1641–1652.PubMedCrossRefGoogle Scholar
  6. 6.
    Cui, J., Wong, W.: Optimal Window Length in the Windowed Adaptive Chirplet Analysis of Visual Evoked Potentials. Proceedings of IEEE EMBS, New York (2006).Google Scholar
  7. 7.
    Cui, J., Wong, W.: The adaptive chirplet transform and visual evoked potentials. IEEE Trans. Biomed. Eng. 53 (2006) 1378–1384.PubMedCrossRefGoogle Scholar
  8. 8.
    Vialatte, F., Martin, C., Dubois, R., Haddad, J., Quenet, B., Gervais, R., Dreyfus, G.: A machine learning approach to the analysis of time-frequency maps, and its application to neural dynamics. Neural Netw. 20 (2007) 194–209.PubMedCrossRefGoogle Scholar
  9. 9.
    Dauwels, J., Vialatte, F., Cichocki, A.: A Novel Measure for Synchrony and Its Application to Neural Signals. Proceedings of IEEE International Conference on Acoustics and Signal Processing (ICASSP), Honolulu, Hawaii (2007).Google Scholar
  10. 10.
    Herrmann, C.S., Grigutsch, M., Busch, N.A.: EEG oscillations and wavelet analysis. In Handy, T. (eds.): Event-Related Potentials: A Methods Handbook. MIT Press Cambridge, (2005) 229–259.Google Scholar
  11. 11.
    Browne, M., Cutmore, T.R.H.: Low-probability event-detection and separation via statistical wavelet thresholding: an application to psychophysiological denoising. Clin. Neurophysiol. 113 (2004) 1403–1411.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • François B. Vialatte
    • 1
  • Justin Dauwels
  • Tomasz M. Rutkowski
  • Andrzej Cichocki
  1. 1.RIKEN Brain Science InstituteSaitamaJapan

Personalised recommendations