Epilogue: A New Vision of Life

  • D. Lloyd
  • E. L. Rossi


This Chapter presents a brief overview of recent progress and indications of future trends in ultradian rhythm research.


Networks coherence homeodynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aon MA, Cortassa S, Lemar KM, Hayes AJ, Lloyd D (2007) Single cell and population oscillations in yeast. A 2-photon scanning laser microscopy study. FEBS Lett 581: 8–14.PubMedCrossRefGoogle Scholar
  2. Bashford CL, Chance B, Lloyd D, Poole RK (1980) Oscillations of redox states in synchronously dividing cultures of Acanthamoeba castellanii and Schizosaccharomyces pombe. Biophys J 29: 1–12.PubMedCrossRefGoogle Scholar
  3. Bhattacharjee V (2007) Is internal timing the key to mental health? Science 317: 1488–1490.PubMedCrossRefGoogle Scholar
  4. Brodsky VY (1966) Protein Synthesis and Cell Functions (in Russian). Nauka, Moscow.Google Scholar
  5. Brodsky VY (1993) Rhythms of Protein Synthesis and Other Circahoralian Oscillations: The Possible Involvement of Fractals. In: D Lloyd and ER Ross (Eds.), Ultradian Rhythms in Life Processes. Springer, London, pp. 23–40.Google Scholar
  6. Bünning E, Chandrashekaran MK (1975) Pfeffer’s views on rhythms. Chronobiologia 2: 160–167.PubMedGoogle Scholar
  7. Buonomano DV (2007) The biology of time across different time scales. Nature Chem Biol 3: 594–597.CrossRefGoogle Scholar
  8. Chance B (2004) Mitochondrial redox state, monitoring, discovery and deployment in tissue. Meth Enzymol 386: 361–370.CrossRefGoogle Scholar
  9. Chance B, Im J, Nioka S, Kushmeric M (2006) Skeletal muscle energetics with PNMR: personal views and historic perspectives NMR. Biomed 19: 904–926.Google Scholar
  10. Dowse HB, Ringo J (1987) Further evidence that the circadian clock in Drosophila is a population of coupled ultradian oscillators. J Biol Rhythm 2: 65076.CrossRefGoogle Scholar
  11. Foote R (2007) Mathematics and complex systems. Science 318: 410–412.PubMedCrossRefGoogle Scholar
  12. Fuentes-Pardo B, Guzman-Gomez AM, Lara-Aparicio M, Lopez de Medrano S (2003) A qualitative model of a motor circadian rhythm. BioSystems 71: 61–69.PubMedCrossRefGoogle Scholar
  13. Gilbert DA (1966) Isoenzymes and cell regulation. Discovery 27: 23–26.Google Scholar
  14. Gooch VD, Packer L (1974) Oscillatory systems in mitochondria. Biochem Biophys Acta 346: 245–260.PubMedGoogle Scholar
  15. Harrison DEF, Chance B (1970) Fluorimetric technique for monitoring changes in the level of reduced nicotinamide nucleotides in continuous cultures. Appl Microbiol 19: 446–450.PubMedGoogle Scholar
  16. Hildebrandt G (1979) Rhythmical functional order and man’s emancipation from the time factor. In KE Schaefer, G Hildebrandt and N Macbeth (Eds.), A New Image of Man in Medicine. 11 Basis of an Individual Physiology. Futura, Mount Kisco, New York, pp. 15–43.Google Scholar
  17. Hütt MT, Lüttge U (2005) Network dynamics in plant biology: current progress in historical perspective. Prog Bot 66: 277–310.CrossRefGoogle Scholar
  18. Klevecz RR, Ruddle FH (1968) Cyclic changes in enzyme activity in synchronized mammalian cell cultures. Science 159: 634–636.PubMedCrossRefGoogle Scholar
  19. Kyriacou CP, Hall JC (1980) Circadian mutations in Drosophilia melanogaster affect short-term fluctuations in the male courtship song. Proc Natl Acad Sci USA 77: 6729–6733.PubMedCrossRefGoogle Scholar
  20. Lillo C, Meyer C, Ruoff P (2001) The nitrate reductase circadian system. The central clock dogma contra multiple oscillatory feedback loops. Plant Physiol 125: 1554–1557.PubMedCrossRefGoogle Scholar
  21. Lloyd D, Murray DB (2000) Redox cycling of intracellular thiols: state variables for ultradian, circadian cell division cycle and circadian rhythms. In T Van den Driessche et al. (Eds.), The Redox State and Circadian Rhythms. Kluwer, Amsterdam.Google Scholar
  22. Lloyd D, Murray DB (2007) Redox rhythmicity: clocks at the core of temporal coherence. Bioessays 29: 465–473.PubMedCrossRefGoogle Scholar
  23. Lüttge U (2003) Circardian rhythmicity: is the “biological clock” hardware or software? Prog-Bot 64: 277–319.Google Scholar
  24. Lüttge U, Hütt M-T (2004) High frequency or ultradian rhythms in plants. Prog Bot 65: 235–263.Google Scholar
  25. Mancuso S, Shabala S (2007) Rhythms in Plants Phenomenology, Mechanisms and Adaptive Significance. Springer, Berlin.Google Scholar
  26. Mayevsky A, Chance B (2007) Oxidation-reduction states of NADH in vivo: from animals to clinical use. Mitochondrion 7: 330–339.PubMedCrossRefGoogle Scholar
  27. Morré DJ, Orczyk J, Hignite H, Kim C (2007) Regular oscillatory behaviour of aqueous solutions of Cu(11) salts related to effects on equilibrium dynamics of ortho/para hydrogen spin isomers of water. J Inorg Biochem 102: 260–267.PubMedCrossRefGoogle Scholar
  28. Murray DB, Lloyd D, Kitano H (2007) Frequency modulation of the yeast reaction network. FEBS J (Suppl 1): D4–D1.Google Scholar
  29. Nakajima M, Imai K, Nishiwaki T, Murayama Y, Iwasaki H, Oyama T, Kondo T (2005) Reconstitution of circadian oscillation of cyanobacterial Kai C phosphorylation in vitro. Science 308: 414–415.PubMedCrossRefGoogle Scholar
  30. Noble D (2006) The Music of Life. Oxford University Press, Oxford.Google Scholar
  31. O’Rourke B, Aon M, Cortassa S (2005) Mitochondrial ion channels: gatekeepers of life and death. Physiol (Bethesda) 20: 303–315.Google Scholar
  32. Paranjpe DA, Sharma VK (2005) Evolution of temporal order in living organisms. J Circadian Rhythms 3: 7–12.PubMedCrossRefGoogle Scholar
  33. Queiroz-Claret C, Valon C, Queiroz O (1988) Are spontaneous conformational interconversions a molecular basis for long-period oscillations in enzyme activity? Chronobiol Int 5: 301–309.PubMedCrossRefGoogle Scholar
  34. Smith MCA, Sumner ER, Avery SV (2007) Glutathione and Gts1p drive beneficial variability in cadmium resistances of individual yeast cells. Mol Microbiol 66: 699–712.PubMedCrossRefGoogle Scholar
  35. West BJ (1999) Physiology, Promiscuity and Prophesy of the Millennium. A Tale of Tails. World Scientific, Singapore.Google Scholar
  36. Yates FE (1992) Fractal applications in biology: scaling time in biochemical networks. Meth Enzymol 210: 636–676.PubMedCrossRefGoogle Scholar
  37. Yates FE (1993) Self-organizing systems. In CAR Boyd and D Noble (Eds.), The Logic of Life. Oxford University Press, Oxford, pp. 189–218.Google Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • D. Lloyd
    • 1
  • E. L. Rossi
    • 2
    • 3
  1. 1.Microbiology (BIOSI 1)Cardiff School of BiosciencesCardiffWales, UK
  2. 2.New Neuroscience School of Therepeutic Hypnosis and PsychotherapySan Lorrenzo MaggioreItaly
  3. 3.Ernest Rossi Foundation for Psychosocial Genomic ResearchLos OsosUSA

Personalised recommendations