Rogue Waves in Higher Order Nonlinear Schrödinger Models

  • Annalisa Calini
  • Constance M. Schober

Abstract

We discuss physical and statistical properties of rogue wave generation in deep water from the perspective of the focusing Nonlinear Schrödinger equation and some of its higher order generalizations. Numerical investigations and analytical arguments based on the inverse spectral theory of the underlying integrable model, perturbation analysis, and statistical methods provide a coherent picture of rogue waves associated with nonlinear focusing events. Homoclinic orbits of unstable solutions of the underlying integrable model are certainly candidates for extreme waves, however, for more realistic models such as the modified Dysthe equation two novel features emerge: (a) a chaotic sea state appears to be an important mechanism for both generation and increased likelihood of rogue waves; (b) the extreme waves intermittently emerging from the chaotic background can be correlated with the homoclinic orbits characterized by maximal coalescence of their spatial modes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ablowitz et al.(2000)
    Ablowitz MJ, Hammack J, Henderson D, Schober CM (2000) Modulated periodic stokes waves in deep water. Phys Rev Lett 84:887–890CrossRefGoogle Scholar
  2. Ablowitz et al.(2001)
    Ablowitz MJ, Hammack J, Henderson D, Schober CM (2001) Long time dynamics of the modulational instability of deep water waves. Physica D 152–153:416–433CrossRefGoogle Scholar
  3. Ablowitz and Segur(1981).
    Ablowitz MJ, Segur H (1981) Solitons and the inverse scattering transform. SIAM, PhiladelphiaGoogle Scholar
  4. Akhmediev et al.(1988)
    Akhmediev NN, Korneev VI, Mitskevich NV (1988) N-modulation signals in a single-mode optical waveguide under nonlinear conditions. Sov Phys JETP 67:1Google Scholar
  5. Bridges and Derks(1999).
    Bridges TJ, Derks G (1999) Unstable eigenvalues and the linearization about solitary waves and fronts with symmetry. Proc R Soc Lond A 455:2427CrossRefGoogle Scholar
  6. Cai et al.(1995)
    Cai D, McLaughlin DW, McLaughlin KTR (1995) The nonlinear Schrödinger equation as both a PDE and a dynamical system. Preprint.Google Scholar
  7. Calini and Schober(2002).
    Calini A, Schober CM (2002) Homoclinic chaos increases the likelihood of rogue waves. Phys Lett A 298:335–349CrossRefGoogle Scholar
  8. Calini et al.(1996)
    Calini A, Ercolani NM, McLaughlin DW, Schober CM (1996) Mel’nikov analysis of numerically induced chaos in the nonlinear Schrödinger equation. Physica D 89:227–260CrossRefGoogle Scholar
  9. Ercolani et al.(1990)
    Ercolani N, Forest MG, McLaughlin DW (1990) Geometry of the modulational instability. Part III: Homoclinic orbits for the periodic Sine-Gordon equation. Physica D 43:349–384CrossRefGoogle Scholar
  10. Haller and Wiggins(1992).
    Haller G, Wiggins S (1992) Orbits homoclinic to resonances: The Hamiltonian case. Physica D 66:298–346CrossRefGoogle Scholar
  11. Henderson et al.(1999)
    Henderson KL, Peregrine DH, Dold JW (1999) Unsteady water wave modulations: Fully nonlinear solutions and comparison with the nonlinear Schrödinger equation. Wave Motion 29:341CrossRefGoogle Scholar
  12. Islas and Schober(2005).
    Islas A, Schober CM (2005) Predicting rogue waves in random oceanic sea states. Phys Fluids 17:1–4CrossRefGoogle Scholar
  13. Its et al.(1988)
    Its AR, Rybin AV, Salle MA (1988) On the exact integration of the nonlinear Schrodinger equation. Theoret. and Math. Phys. 74(1): 20–32CrossRefGoogle Scholar
  14. Janssen(2003).
    Janssen P (2003) Nonlinear four-wave interactions and freak waves. J Phys Oceanogr 33:863–884CrossRefGoogle Scholar
  15. Karjanto(2006).
    Karjanto N (2006) Mathematical aspects of extreme water waves. Ph.D. Thesis, Universiteet TwenteGoogle Scholar
  16. Li(1999).
    Li Y (1999) Homoclinic tubes in the nonlinear Schrödinger equation under Hamiltonian perturbations. Prog Theor Phys 101:559–577CrossRefGoogle Scholar
  17. Li and McLaughlin(1994).
    Li Y, McLaughlin DW (1994) Morse and Mel’nikov functions for NLS Pde’s discretized perturbed NLS systems. I. Homoclinic orbits. Commun Math Phys 612:175–214CrossRefGoogle Scholar
  18. Li et al.(1996)
    Li Y, McLaughlin DW, Shatah J, Wiggins S (1996) Persistent homoclinic orbits for a perturbed nonlinear Schrödinger equation. Commun Pure Appl Math 49:1175–1255CrossRefGoogle Scholar
  19. Longuet-Higgins(1952).
    Longuet-Higgins MS (1952) On the statistical distribution of the heights of sea waves. J Mar Res 11:1245Google Scholar
  20. Matveev and Salle(1991).
    Matveev VB, Salle MA (1991) Darboux transformations and solitons. Springer, Berlin Heidelberg New YorkGoogle Scholar
  21. McLaughlin and Schober(1992).
    McLaughlin DW, Schober CM (1992) Chaotic and homoclinic behavior for numerical discretizations of the nonlinear Schrödinger equation. Physica D 57:447–465CrossRefGoogle Scholar
  22. Ochi(1998).
    Ochi MK (1998) Ocean waves: The stochastic approach. Cambridge University Press, CambridgeGoogle Scholar
  23. Osborne(2000).
    Osborne A, Onorato M, Serio M (2000) The nonlinear dynamics of rogue waves and holes in deep-water gravity wave trains. Phys Lett A 275:386CrossRefGoogle Scholar
  24. Onorato(2001).
    Onorato M, Osborne A, Serio M, Bertone S (2001) Freak wave in random oceanic sea states. Phys Rev Lett 86:5831CrossRefGoogle Scholar
  25. Schober(2006).
    Schober C (2006) Melnikov analysis and inverse spectral analysis of rogue waves in deep water. Eur J Mech B Fluids 25:602–620CrossRefGoogle Scholar
  26. Trulsen and Dysthe(1996).
    Trulsen K, Dysthe K (1996) A modified nonlinear Schrödinger equation for broader bandwidth gravity waves on deep water. Wave Motion 24:281CrossRefGoogle Scholar
  27. Trulsen and Dysthe(1997a).
    Trulsen K, Dysthe K (1997a) Frequency downshift in three-dimensional wave trains in a deep basin. J Fluid Mech 352:359–373CrossRefGoogle Scholar
  28. Trulsen and Dysthe(1997a).
    Trulsen K, Dysthe K (1997b) Freak waves – a three dimensional wave simulation. In: Rood EP (ed) Naval hydrodynamics. Proceedings of the 21st symposium on nature. Academic Press, USAGoogle Scholar
  29. Zakharov and Shabat(1972).
    Zakharov VE, Shabat AB (1972) Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov Phys JETP 34:62–69Google Scholar
  30. Zeng(2000).
    Zeng C (2000) Homoclinic orbits for a perturbed nonlinear Schrödinger equation. Commun Pure Appl Math 53:1222–1283CrossRefGoogle Scholar
  31. Zeng(2000).
    Zeng C (2000) Erratum: Homoclinic orbits for a perturbed nonlinear Schrödinger equation. Commun Pure Appl Math 53:1603–1605CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  • Annalisa Calini
    • 1
  • Constance M. Schober
    • 2
  1. 1.Department of MathematicsCollege of CharlestonCharlestonUSA
  2. 2.Department of MathematicsUniversity of Central FloridaOrlandoUSA

Personalised recommendations