Advertisement

Freak Waves: Peculiarities of Numerical Simulations

  • V. E. Zakharov
  • A. I. Dyachenko
  • A. O. Prokofiev

Abstract

Numerical simulation of evolution of nonlinear gravity waves is presented. Simulation is done using two-dimensional code, based on conformal mapping of the fluid to the lower half-plane. We have considered two problems: (i) modulation instability of wave train and (ii) evolution of nonlinear Shrödinger equation solitons with different steepness of carrier wave. In both cases we have observed formation of freak waves.

Keywords

Gravity Wave Conformal Mapping Water Wave Wave Train Modulation Instability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ablovitz et al.(2000)
    Ablovitz MI, Hammack D, Henderson J, Scholder CM (2000) Modulated periodic stokes waves in deep water. Phys Rev Lett:887–890Google Scholar
  2. Ablovitz et al.(2001)
    Ablovitz MI, Hammack D, Henderson J, Scholder CM (2001) Long-time dynamics of the modulational instability of deep water. Phys D 152–153:416–433CrossRefGoogle Scholar
  3. Balk(1996).
    Balk A (1996) A Lagrangian for water waves. Phys Fluids 8:416–420CrossRefGoogle Scholar
  4. Banner and Tian(1998).
    Banner M, Tian X (1998) On the determination of the onset of wave breaking for modulating surface gravity waves. J Fluid Mech 367:107–137CrossRefGoogle Scholar
  5. Benjamin and Feir(1967).
    Benjamin TB, Feir JE (1967) The disintegration of wave trains on deep water: Part 1. Theory. J Fluid Mech 27:417–430CrossRefGoogle Scholar
  6. Chase(2003).
  7. Chalikov and Sheinin(1998).
    Chalikov D, Sheinin D (1998) Direct modeling of one-dimensional nonlinear potential waves. In: Perrie W (ed) Nonlinear ocean waves: Advances in fluid mechanics, vol 17. Computation Mechanics Publications, MA, pp 89–110Google Scholar
  8. Clamond and Grue(2001).
    Clamond D, Grue J (2001) A fast method for fully nonlinear-wave computations. J Fluid Mech 447:337–355Google Scholar
  9. Clamond and Grue(2002).
    Clamond D, Grue J (2002) Interaction between envelope solitons as a model for freak wave formation: Part 1. Long time interaction. C.R.Mecanique 330:575–580CrossRefGoogle Scholar
  10. Dean(1990).
    Dean RG (1990) Freak waves: A possible explanation. In: Torum A, Gudmestad OT (eds) Water w ave kinetics. Kluwer, Dordrecht, pp 609–612Google Scholar
  11. Divinsky et al.(2004)
    Divinsky VD, Levin BV, Lopatikhin LI, Pelinovsky EN, Slyunyaev AV (2004) A freak wave in the Black sea: Observations and simulation. Doklady Earth Sci 395:438–443Google Scholar
  12. Dold(1992).
    Dold JW (1992) An efficient surface integral algorithm applied to unsteady gravity waves. J Comput Phys 103:90–115CrossRefGoogle Scholar
  13. Dold and Peregrine(1986).
    Dold JW, Peregrine DH (1986) Water-wave modulation. In: Proceedings of 20th International Conference on Coastal Engineering. vol 1, Chap 13, pp 163–175Google Scholar
  14. Dommermuth and Yue(1987).
    Dommermuth DG, Yue DKP (1987) A high-order spectral method for the study of nonlinear gravity waves. J Fluid Mech 184:267–288CrossRefGoogle Scholar
  15. Dyachenko et al.(1996)
    Dyachenko AI, Kuznetsov EA, Spector MD, Zakharov VE (1996) Analytical description of the free surface dynamics of an ideal fluid (canonical formalism and conformal mapping). Phys Lett A 221:73–79CrossRefGoogle Scholar
  16. Dyachenko(2001).
    Dyachenko AI (2001) On the dynamics of an ideal fluid with free surface. Doklady Math 63:115–118Google Scholar
  17. Dyachenko and Zakharov(2005).
    Dyachenko AI, Zakharov VE (2005) Modulation instability of stokes wave - Freak wave. JETP Lett 81(6):255–259CrossRefGoogle Scholar
  18. Dyachenko(2005).
    Dyachenko AI (2005) Instability in the numeric models of free surface hydrodynamics. In: International conference on Frontiers of Nonlinear Physics, St.Petersburg-Nizhny Novgorod, Russia, 2–9 August 2005Google Scholar
  19. Dysthe(1979).
    Dysthe KB (1979) Note on a modification to the nonlinear Schrodinger equation for application to deep water waves. Proc R Soc Lond Ser A 369:105–114CrossRefGoogle Scholar
  20. Earle(1975).
    Earle MD (1975) Extreme wave conditions during Hurricane Camille. J Geophys Res 80:377–379CrossRefGoogle Scholar
  21. Feir(1967).
    Feir JE (1967) Discussion: Some results from wave pulse experiments. Proc R Soc Lond A 299:54–58CrossRefGoogle Scholar
  22. Gerber(1987).
    Gerber M (1987) The Benjamin-Feir instability of a deep water s tokes wave packet in the presence of a non-uniform medium. J Fluid Mech 176:311–332CrossRefGoogle Scholar
  23. Gerber(1993).
    Gerber M (1993) The interaction of deep water gravity waves and an annular current: Linear theory. J Fluid Mech 248:153–172CrossRefGoogle Scholar
  24. Grundlingh(1994).
    Grundlingh ML (1994) Evidence of surface wave enhancement in the southwest Indian Ocean from satellite altimetry. J. Geophys. Res. 99:7917–7927CrossRefGoogle Scholar
  25. Gutshabash and Lavrenov(1986).
    Gutshabash YS, Lavrenov IV (1986) Swell transformation in the Cape Agulhas current. Izv Atmos Ocean Phys 22 494–497Google Scholar
  26. Henderson et al.(1999)
    Henderson KLD, Peregrine DH, Dold JW (1999) Unsteady water wave modulations: Fully nonlinear solutions and comparison with nonlinear Schrodinger equation. Wave Motion 29:341–361CrossRefGoogle Scholar
  27. Irvine and Tilley(1988).
    Irvine DE, Tilley DG (1988) Ocean wave directional spectra and wave-current interaction in the Agulhas from the shuttle imaging radar-B synthetic aperture radar. J Geophys Res 93:15389–15401CrossRefGoogle Scholar
  28. Kharif and Pelinovsky(2003).
    Kharif C, Pelinovsky E (2003) Physical mechanisms of the rogue wave phenomena. Eur J Mech B: Fluids 22:603–634CrossRefGoogle Scholar
  29. Lavrenov(1998).
    Lavrenov IV (1998) The wave energy concentration at the Agulhas current of South Africa. Nat Hazards 17:117–127CrossRefGoogle Scholar
  30. Lighthill(1965).
    Lighthill M.J. (1965) Contribution to the theory of waves in nonlinear dispersive systems. J Inst Math Appl 1:269–306CrossRefGoogle Scholar
  31. Majda et al.(1997)
    Majda A, McLaughlin D, Tabak A (1997) one-dimensional model for dispersive wave turbulence. J Nonlinear Sci 7:9–44CrossRefGoogle Scholar
  32. Mallory(1974).
    Mallory JK (1974) Abnormal waves on the south-east of South Africa. Inst Hydrog Rev 51:89–129Google Scholar
  33. Meison et al.(1981)
    Meison D, Orzag S, Izraely M (1981) Applications of numerical conformal mapping. J Comput Phys 40:345–360CrossRefGoogle Scholar
  34. Mori et al.(2002)
    Mori N, Liu PC, Yasuda T (2002) Analysis of freak wave measurements in the sea of Japan. Ocean Eng 29:41399–41414Google Scholar
  35. Nalimov(1974).
    Nalimov VI (1974) The Cauchy-Poisson problem. (Russian) Dinamika Sploshnoi Sredy, Vyp. 18. Dinamika Zidkost. so Svobod Granicami:104–210Google Scholar
  36. Onorato et al.(2001)
    Onorato M, Osborne AR, Serio M, Damiani T (2001) Occurence of freak waves from envelope equation in random ocean wave simulations. In: Olagnon M, Athanassoulis GA (eds) Rogue waves 2000: Brest, France, Ifremer, pp 181–192Google Scholar
  37. Onorato et al.(2000)
    Onorato M, Osborne AR, Serio M (2000) The nonlinear dynamics of rogue waves and holes in deep-water gravity wave trains. Phys Lett A 275:386–393CrossRefGoogle Scholar
  38. Onorato et al.(2001)
    Onorato M, Osborne AR, Serio M, Bertone S (2001) Freak waves in random oceanic sea states. Phys Rev Lett 86:5831–5834CrossRefGoogle Scholar
  39. Onorato et al.(2002)
    Onorato M, Osborne AR, Serio M (2002) Extreme wave events in directional, random oceanic sea states. Phys Fluids 14:L25–L28CrossRefGoogle Scholar
  40. Ovsyannikov(1973).
    Ovsyannikov LV (1973) Dinamika sploshnoi sredy, M.A. Lavrent’ev Institute of hydrodynamics Sib. Branch USSR Acad Sci, No.15, pp 104–125Google Scholar
  41. Peregrine(1976).
    Peregrine DH (1976) Interaction of water waves and currents. Adv Appl Mech 16:9–117CrossRefGoogle Scholar
  42. Peregrine(1983).
    Peregrine DH (1983) Water waves, nonlinear Schrodinger equations and their solutions. J Aust Math Soc B 25:16–43CrossRefGoogle Scholar
  43. Peregrine et al.(1988)
    Peregrine DH, Skyner D, Stiassnie M, Dold N (1988) Nonlinear effects on focused water waves. In: Proceedings of 21th international conference on coastal engineering, vol 1, chap 54, pp 732–742Google Scholar
  44. Sand et al.(1990)
    Sand SE, Hansen NE, Klinting P, Gudmestad OT, Sterndorff MJ (1990) Freak wave kinematics. In: Torum A, Gudmestad OT (eds) Water wave kinematics, Kluwer, Dodrecht, pp 535–549Google Scholar
  45. Shamin(2006).
    Shamin RV (2006) On the existence of smooth solutions to the Dyachenko equations governing free-surface unsteady ideal fluid flows. Doklady Math 73(1):112–113CrossRefGoogle Scholar
  46. Smith(1976).
    Smith, R. Giant waves, Fluid Mech. 77 (1976), 417–431CrossRefGoogle Scholar
  47. Song and Banner(2002).
    Song J, Banner ML (2002) On determining the onset and strength of breaking for deep water waves: Part 1. Unforced irrotational wave groups. J Phys Oceanogr 32:2541–2558Google Scholar
  48. Tanaka(1990).
    Tanaka M (1990) Maximum amplitude of modulated wavetrain. Wave Motion 12:559–568CrossRefGoogle Scholar
  49. Taylor(1950).
    Taylor G (1950) The Instability of liquid surfaces when accelerated in a direction perpendicular to their Planes. I. Proc R Soc Lond A 201:192–196CrossRefGoogle Scholar
  50. Trulsen and Dysthe(1996).
    Trulsen K, Dysthe KB (1996) A modified nonlinear Schrodinger equation for broader bandwidth gravity waves on deep water. Waves Motion 24:281–289CrossRefGoogle Scholar
  51. Trulsen and Dysthe(1997).
    Trulsen K, Dysthe KB (1997) Freak waves – A three-dimensional wave simulation. In: Proceedings of 21st symposium on naval hydrodynamics, 1997, pp 550–558 http://www.nap.edu/books/0309058791/html/550.html
  52. Trulsen(2000).
    Trulsen K (2001) Simulating the spatial evolution of a measured time series of a freak wave. In: Olagnon M, Athanassoulis GA (eds) Rogue waves 2000: Brest, France, November 2000, Ifremer, pp 265–274Google Scholar
  53. Trulsen et al.(2000)
    Trulsen K, Kliakhandler I, Dysthe KB, Velarde MG (2000) On weakly nonlinear modulation of waves on deep water. Phys Fluids 12:2432–2437CrossRefGoogle Scholar
  54. West et al.(1987)
    West B, Brueckner K, Janda R, Milder D, Milton R (1987) A new numerical method for surface hydrodynamics. J Geophys Res C 92(11):11803–11824CrossRefGoogle Scholar
  55. White and Fornberg(1998).
    White BS, Fornberg B (1998) On the chance of freak waves at sea. J Fluid Mech 355:113–138CrossRefGoogle Scholar
  56. Zakharov(1967).
    Zakharov VE (1967) Stability of nonlinear waves in dispersive media. J Teor Prikl Fiz 51 (1966) 668–671 (in Russian); Sov Phys JETP 24:455–459Google Scholar
  57. Zakharov(1968).
    Zakharov VE (1968) Stability of periodic waves of finite amplitude on a surface of deep fluid. J Appl Mech Tech Phys 9:190–194CrossRefGoogle Scholar
  58. Zakharov and Shabat(1972).
    Zakharov VE, Shabat AB (1972) Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov Phys JETP 34:62–69Google Scholar
  59. Zakharov and Kuznetsov(1998).
    Zakharov VE, Kuznetsov EA (1998) Optical solitons and quasisolitons. JETP 86:1035–1046CrossRefGoogle Scholar
  60. Zakharov et al.(2002)
    Zakharov VE, Dyachenko AI, Vasilyev OA (2002) New method for numerical simulation of nonstationary potential flow of incompressible fluid with a free surface. Eur J Mech B Fluids 21:283–291CrossRefGoogle Scholar
  61. Zakharov et al.(2004)
    Zakharov VE, Dias F, Pushkarev AN (2004) One-dimensional wave turbulence. Phys Rep 398: 1–65CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  • V. E. Zakharov
    • 1
    • 2
  • A. I. Dyachenko
    • 3
  • A. O. Prokofiev
    • 3
  1. 1.Department of MathematicsUniversity of ArizonaTucsonUSA
  2. 2.Waves and Solitons LLCGilbertUSA
  3. 3.Landau Institute for Theoretical PhysicsMoscowRussia

Personalised recommendations