Advertisement

Antarctic Yeasts: Biodiversity and Potential Applications

  • S. Shivaji
  • G. S. Prasad

This review is an attempt in cataloguing the diversity of yeasts in Antarctica, highlight their biotechnological potential and understand the basis of adaptation to low temperature. As of now several psychrophilic and psychrotolerant yeasts from Antarctic soils and marine waters have been characterized with respect to their growth characteristics, ecological distribution and taxonomic significance. Interestingly most of these species belonged to basidiomycetous yeasts which as a group are known for their ability to circumvent and survive under stress conditions. Simultaneously their possible role as work horses in the biotechnological industry was recognized due to their ability to produce novel enzymes and biomolecules such as agents for the breakdown of xenobiotics, and novel pharmaceutical chemi cals. The high activity of psychrophilic enzymes at low and moderate temperatures offers potential economic benefits. As of now lipases from Pseudozyma antarctica have been extensively studied to understand their unique thermal stability at 90°C and also because of its use in the pharmaceutical, agriculture, food, cosmetics and chemical industry. A few of the other enzymes which have been studied include extracellular alpha-amylase and glucoamylase from the yeast Pseudozyma antarctica (Candida antarctica), an extra-cellular protease from Cryptococcus humicola, an aspartyl proteinase from Cryptococcus humicola, a novel extracellular subtilase from Leucosporidium antarcticum, and a xylanase from Cryptococcus adeliensis

The ability of these yeasts to adapt to the low temperature conditions has also led to investigations directed towards characterizations of cold stress proteins and heat shock proteins so as to understand the role of these stress protein with respect to adaptation. Antarctic yeasts have also been used as model system to study the inter-relationship among free radicals, antioxidants and UV-induced cell damage

Keywords

Biodiversity yeast Antarctica enzymes lipase psychrophilic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amoresano, A., Andolfo, A., Corsaro, M.M., Zocchi, I., Petrescu, I., Gerday, C., and Marino, G. 2000. Glycobiology, 10: 451–458.CrossRefGoogle Scholar
  2. Anderson, E.M., Larsson, K.M., and Kirk, O. 1998. Biocatal. Biotransform., 16: 181–204.CrossRefGoogle Scholar
  3. Arroyo, M., Sanchez-Montero, J.M., and Sinisterra, J.V. 1998. Enzyme Microb. Technol., 24: 3–12.CrossRefGoogle Scholar
  4. Arsan, J. and Parkin, K.L. 2000. J. Agric. Food Chem., 48: 3738–3743.CrossRefGoogle Scholar
  5. Arthur, H. and Watson, K. 1976. J. Bacteriol., 128: 56–68.Google Scholar
  6. Bab'eva, I.P., Lisichkina, G.A, Reshetova, I.S and Danilevich, V.N. 2002. Mikrobiol., 71: 526–532.Google Scholar
  7. Babyeva, I.P. and Golubev, W.I. 1969. Microbiology, 38: 436–440.Google Scholar
  8. Barnett, J.A., Payne, R.W., and Yarrow, D. 2000. Yeasts: Characteristics and Identification, 3rd edn. Cambridge University Press, Cambridge.Google Scholar
  9. Biswas, K., Shivaji, S. and Prasad, G.S. (unpublished results)Google Scholar
  10. Brizzio, S. Turchetti, B. Garcia, V. de Libkind, D. Buzzini, P. and van Broock, M. 2007. Can. J. Microbiol., 53: 519–525.CrossRefGoogle Scholar
  11. Cameron, R.E. King, J. and David, C.N. 1970. Holdgate, M. (ed.), Antarctic ecology, vol. 2 In: Academic Press, New York, pp. 702–716.Google Scholar
  12. Campbell, I.B. and Claridge, G.G.C. 2000. In: Davidson, W., Howard-Williams, C., and Broady, P., (eds.), Antarctic Ecosystems: models for wider understanding, Caxton Press, Christchurch, pp. 2332–2340.Google Scholar
  13. Cavicchioli, R., Siddiqui, K.S., Andrews, D., and Sowers, K.R. 2002. Curr. Opin. Biotechnol., 13: 253–261.CrossRefGoogle Scholar
  14. Chattopadhyay, M.K., Jagannadham, M.V., Vairamani, M., and Shivaji, S. 1997. Biochem. Biophys. Res. Commun., 239: 85–90.CrossRefGoogle Scholar
  15. Chintalapati, S., Kiran, M.D., and Shivaji, S. 2005. Cell Mol. Biol., 50: 631–642.Google Scholar
  16. Chintalapati, S., Prakash, J.S.S., Gupta, P., Ohtani, S., Suzuki, I., Sakamoto, T., Murata, N., and Shivaji, S. 2006. Biochem. J., 398: 207–214.CrossRefGoogle Scholar
  17. Chintalapati, S., Prakash, J.S.S., Singh, A.K., Ohtani, S., Suzuki, I., Murata, N., and Shivaji, S. 2007. Biochem. Biophys. Res. Commun., (In press).Google Scholar
  18. Claridge, G.G. and Campbell, I.B. 1977. Soil Sci., 123: 337–384.CrossRefGoogle Scholar
  19. de María, P.D., Carboni-Oerlemans, C., Tuin B., Bargeman, G., van der Meer, A.B. and van Gemert, R. 2005. J. Mol. Catal. B-Enzym., 37: 36–46.CrossRefGoogle Scholar
  20. De Mot, R. and Verachtert, H. 1987. Eur. J. Biochem., 164: 643–654.CrossRefGoogle Scholar
  21. Deegenaars, M.L. and Watson, K. 1997. FEMS Microbiol. Lett., 151: 191–196.CrossRefGoogle Scholar
  22. Deegenaars, M.L. and Watson, K. 1998. Extremophiles, 2: 41–49.CrossRefGoogle Scholar
  23. Di Menna, M.E. 1960. J. Gen. Microbiol., 23: 295–300.Google Scholar
  24. Di Menna, M.E. 1966a. Antonie van Leeuwenhoek 32: 29–38.CrossRefGoogle Scholar
  25. Di Menna, M.E. 1966b. Antonie van Leeuwenhoek 32: 25–28.CrossRefGoogle Scholar
  26. Fell, J.W. 1976. In: Jones E.B.G. (ed.), Recent advances in aquatic mycology, Elek Science, London, pp. 93–124.Google Scholar
  27. Fell, J.W. and Hunter, I.L. 1974. Antonie van Leeuwenhoek 40: 307–310.CrossRefGoogle Scholar
  28. Fell, J., Boekhout, T., Fonseca, A., Scorzetti, G., and Statzell-Tallman, A. 2000. Int. J. Syst. Evol. Microbiol., 50: 1351–1371.Google Scholar
  29. Fell, J.W. and Statzell-Tallman, A. In: 1998. Kurtzman, C.P. and Fell, J.W., (eds.), The yeasts, a taxonomic study, 4 th edn. Elsevier, B.V. Amserdam.Google Scholar
  30. Fell, J.W., Statzell, A.C., Hunter, I.L., and Phaff, H.J. 1969. Antonie van Leeuwenhoek 35: 433–442.CrossRefGoogle Scholar
  31. Feller, G. and Gerday, C. 1997. Psychrophilic enzymes: molecular basis of cold adaptation. CMLS Cell Mol. Life Sci., 53: 830–841.Google Scholar
  32. Fonseca, A., Scorzetti, G., and Fell, J.W. 2000. Can. J. Microbiol., 46: 7–27.CrossRefGoogle Scholar
  33. Gerday, C., Aittaleb, M., Arpigny, JL., Baise, E., Chessa, JP., Garsoux, G., Petrescu, I., and Feller, G., 1997. Biochim. Biophys. Acta., 1342: 119–131.Google Scholar
  34. Gomes, J., Gomes, I., and Steiner, W., 2000. Extremophiles, 4: 227–235.CrossRefGoogle Scholar
  35. Goto, S., Sugiyama, J., and Iizuka, H. 1969. Mycologia, 61: 748–774.CrossRefGoogle Scholar
  36. Guffogg, S.P., Thomas-Hall, S., Holloway, P., and Watson, K. 2004. Int. J. Syst. Evol. Microbiol., 54: 275–277.CrossRefGoogle Scholar
  37. Hagler, A.N. and Ahearn, D.G. 1987. In: Rose, A.H. and Harrison, J.S. (eds.), The Yeasts, vol. 1 Academic Press, London, UK.Google Scholar
  38. Holdgate, MV. 1977. Philos. T. Roy. Soc. B, 279: 5–25.CrossRefGoogle Scholar
  39. Hsu, AF., Jones, K., Foglia, TA., and Marmer, WN. 2003. Biotechnol. Appl. Biochem., 36: 181–186.CrossRefGoogle Scholar
  40. Ingram, M. 1958. In: Cook A.H., (ed.), The chemistry and biology of yeasts, Academic Press, New York, pp. 603–633.Google Scholar
  41. Inniss, W.E. 1975. Annu. Rev. Microbiol., 29: 445–465.CrossRefGoogle Scholar
  42. Jagannadham, M.V., Chattopadhyay, M.K., Subbalakshmi, C., Vairamani, M., Narayanan, K., Mohan Rao, Ch., and Shivaji, S. 2000. Arch. Microbiol., 173: 418–424.CrossRefGoogle Scholar
  43. Jagannadham, M.V., Jayathirtha Rao, V., and Shivaji, S. 1991. J. Bacteriol., 173: 7911–7917.Google Scholar
  44. Katayama-Hirayama, K., Koike, Y., Kaneko, H., Kikuo Kobayash, K., and Hirayama, K. 2003. Polar Biosci., 16: 43–48.Google Scholar
  45. Kiran, M.D., Annapoorni, S., Suzuki, I., Murata, N., and Shivaji, S. 2005. Extremophiles, 9: 117–125.CrossRefGoogle Scholar
  46. Kiran, M.D., Prakash, J.S.S., Annapoorni, S., Dube, S., Kusano, T., Okuyama, H., Murata, N., and Shivaji, S. 2004. Extremophiles, 8: 401–410.CrossRefGoogle Scholar
  47. Kirk, O., Borchert, TV., and Fuglsang, CC. 2002. Curr. Opin. Biotechnol., 13: 345–351.CrossRefGoogle Scholar
  48. Kirk, O. and Christensen, M.W. 2002. Org. Process Res. Dev., 6: 446–451.CrossRefGoogle Scholar
  49. Koops, B.C., Papadimou, E., Verheij, H.M., Slotboom, A.J., and Egmond, M.R. 1999. Appl. Microbiol. Biotechnol., 52: 791–796.CrossRefGoogle Scholar
  50. Kurtzman, C.P. and Robnett, C.J. 1998. Antonie van Leeuwenhoek 73: 331–371.CrossRefGoogle Scholar
  51. Lachance, MA. and Starmer, WT. 1988. In: Kurtzman, C.P. and Fell, J.W. (eds.), The yeasts, a taxonomic study. 4th edn. Elsevier, B.V. Amserdam.Google Scholar
  52. Larios, A., Garcia, HS., Oliart, RM., and Valerio-Alfaro, G. 2004. Appl. Microbiol. Biotechnol., 65: 373–376.CrossRefGoogle Scholar
  53. Larkin, J.M. and Stokes, J.L. 1968. Can. J. Microbiol., 14: 97–101.Google Scholar
  54. Libkind, D., Dieguez, MC., Moline, M., Perez, P., Zagarese, HE., and van Broock, M. 2006. Photochem. Photobiol., 82: 972–980.CrossRefGoogle Scholar
  55. Lopez-Archilla, AI., Gonzalez, AE., Terron, MC., and Amils, R. 2004. Can. J. Microbiol., 50: 923–934.CrossRefGoogle Scholar
  56. Margesin, R., Fauster, V., and Fonteyne, PA. 2005. Lett. Appl. Microbiol., 40: 453–459.CrossRefGoogle Scholar
  57. Meyer, E.D., Sinclair, N.A., and Nagy, B. 1975. Appl. Microbiol., 75: 739–744.Google Scholar
  58. Middelhoven, W.J. 2005. Antonie Van Leeuwenhoek. 87:101–108.CrossRefGoogle Scholar
  59. Montes, M.J., Belloch, C., Galiana, M., Garcia, M.D., Andres, C., Ferrer, S., Tores-Rodriguez, J.M., and Guinea, J. 1999. Syst. Appl. Microbiol.,22: 97–105.Google Scholar
  60. Morita R.Y. 1975. Bact. Rev., 39: 144–167.Google Scholar
  61. Murata, N., Wada, H., and Gombos, Z. 1992. Plant Cell Physiol., 33: 933–941.Google Scholar
  62. Nakagawa, T., Nagaoka, T., Taniguchi, S., Miyaji, T., and Tomizuka, N. 2004. Lett. Appl. Microbiol., 38: 383–387.CrossRefGoogle Scholar
  63. Passicos, E., Santarelli, X., and Coulon, D. 2004. Biotechnol. Lett., 26: 1073–1076.CrossRefGoogle Scholar
  64. Patkar, S., Vind, J., Kelstrup, E., Christensen, MW., Svendsen, A., Borch, K., and Kirk, O. 1998. Chem. Phys. Lipids, 93: 95–101.CrossRefGoogle Scholar
  65. Pavlova, K., Grigorova, D., Hristozova, T., and Angelov, A. 2001. Folia Microbiol. (Praha)., 46: 397–401.CrossRefGoogle Scholar
  66. Petrescu, I., Lamotte-Brasseur, J., Chessa, J.-P., Claeyssens, M., Devreese, B., Marino, G., and Gerday, C. 2000. Extremophiles, 4: 137–144.CrossRefGoogle Scholar
  67. Poliakova, A.V., Chernov, I.Y., and Panikov, N.S. 2001. Microbiology, 70: 617–622.CrossRefGoogle Scholar
  68. Prabagaran, S.R., Manorama, R., Delille, D., and Shivaji, S. 2006. FEMS Microbiol. Ecol., 59: 342–355.Google Scholar
  69. Ray, MK., Devi, KU., Kumar, GS., and Shivaji, S. 1992. Appl. Environ. Microbiol., 58: 1918–1923.Google Scholar
  70. R a y M.K., Seshu Kumar, G., and Shivaji, S. 1994a. Microbiology, 140: 3217–3223.CrossRefGoogle Scholar
  71. R a y M.K., Seshu Kumar, G., and Shivaji, S. 1994b. J. Bacteriol., 176: 4243–4249.Google Scholar
  72. Ray M.K., Sitaramamma, T., Ghandhi, S., and Shivaji, S. 1994c. FEMS Microbiol. Lett., 116: 55–60.CrossRefGoogle Scholar
  73. Ray M.K., Shivaji, S., Rao, N.S., and Bhargava, P. M. 1989. Polar Biol., 9: 305–309.CrossRefGoogle Scholar
  74. Raza, S., Fransson, L., and Hult, K. 2001. Protein Sci., 10: 329–338.CrossRefGoogle Scholar
  75. Rubio, C., Latxague, L., Deleris, G., and Coulon, D. 2001. J. Biotechnol., 92: 61–66.CrossRefGoogle Scholar
  76. Sabri, A., Bare, G., Jacques, P., Jabrane, A., Ongena, M. Heugen, J.C., Van Devreese, B., and Thonart, P. 2001. J. Biol. Chem., 276: 12691–12696.CrossRefGoogle Scholar
  77. Saluja, P. and Prasad, G.S. (unpublished results)Google Scholar
  78. Sato, N. and Murata, N. 1980. Biochim. Biophys. Acta., 619: 353–366.Google Scholar
  79. Sato, N., Murata, N., Miura, Y., and Ueta, N. 1979. Biochim. Biophys. Acta., 572: 19–28.Google Scholar
  80. Scorzetti, G., Fell, J. W., Fonseca, A., and Statzell-Tallman, A. 2002. FEMS Yeast Res., 2: 495–517.Google Scholar
  81. Scorzetti, G., Petrescu, I., Yarrow, D., and Fell, J.W. 2000. Antonie van Leeuwenhoek 77: 153–157.CrossRefGoogle Scholar
  82. Seiburth, J. McN. 1979. Sea Microbes. Oxford University Press, New York.Google Scholar
  83. Shivaji, S. 2005. In: Satyanarayana T. Johri B.N. (eds.), Microbial diversity: current perspectives and potential applications. I.K. International Pvt. Ltd., New Delhi, pp. 3–24.Google Scholar
  84. Shivaji, S., Gupta, P., Chaturvedi, P., Suresh, K., and Delille, D. 2005a. Int. J. Syst. Evol. Microbiol., 55: 1083–1088.CrossRefGoogle Scholar
  85. Shivaji, S., Kiran, M.D., and Chintalapati, S. 2007. In: Gerday C. Glansdorff N. (eds.), Physiology and biochemistry of extremophiles, ASM Press, Washington, pp. 194–207.Google Scholar
  86. Shivaji, S., Reddy, G.S.N., Aduri, R.P., Kutty, R., and Ravenschlag, K. 2005b. Cell Mol. Biol., 50: 525–536.Google Scholar
  87. Shivaji, S., Reddy, G.S.N., Raghavan, P. U. M., Sarita, N.B., and Delille, D. 2004. Syst. Appl. Microbiol., 27: 628–635.CrossRefGoogle Scholar
  88. Shivaji, S., Reddy, G.S.N., Suresh, K., Gupta, P., Chintalapati, S., Schumann, P., Stackebrandt, E., and Matsumoto, G. 2005c. Int. J. Syst. Evol. Microbiol., 55: 757–762.CrossRefGoogle Scholar
  89. Silver, S.A. and Sinclair, N.A. 1979. Mycopathologia, 67: 59–64.CrossRefGoogle Scholar
  90. Silver, S.A., Yall, I., and Sinclair, N.A. 1977. J. Bacteriol., 132: 676–680.Google Scholar
  91. Smith, R.C., Prezelin, B.B., and Baker, K.S. et al. 1992. Science 255: 952–959.CrossRefGoogle Scholar
  92. Suen, W.C., Zhang, N., Xiao, L., Madison, V., and Zaks, A. 2004. Protein Eng. Des. Sel., 17: 133–140.CrossRefGoogle Scholar
  93. Sugita, T., Takashima, M., Ikeda, R., Nakase, T., and Shinoda, T. 2000. J. Clin. Microbiol., 38: 1468–1471.Google Scholar
  94. Summerbell, R.C. 1983. Can. J. Bot., 61: 1402–1410.Google Scholar
  95. Takashima, M., Sugita, T., Shinoda, T., and Nakase, T. 2003. Int. J. Syst. Evol. Microbiol., 53: 1187–1194.CrossRefGoogle Scholar
  96. Thomas-Hall, S. and Watson, K. 2002. Int. J. Syst. Evol. Microbiol., 52: 1033–1038.CrossRefGoogle Scholar
  97. Thomas-Hall, S., Watson, K., Scorzetti, G. 2002. Int. J. Syst. Evol. Microbiol., 52: 2303–2308.CrossRefGoogle Scholar
  98. Tsimako, M., Guffogg, S., Thomas-Hall, S., and Watson, K. 2002. Redox Rep., 7: 312–314.CrossRefGoogle Scholar
  99. Turkiewicz, M., Pazgier, M., Kalinowska, H., and Bielecki, S. 2003. Extremophiles, 7: 435–442.CrossRefGoogle Scholar
  100. United Nations Environment Programme 2004. Industry involvement in Antarctic bioprospecting. Prepared by United Nations University Institute of Advanced Studies, Tokyo, Japan.Google Scholar
  101. van Uden, N. 1984. Adv. Microb. Physiol., 25: 195–251.Google Scholar
  102. Vincent, C.F. 1988. Microbial ecosystems of Antarctica. Cambridge University Press, Cambridge:p. 303.Google Scholar
  103. Vishniac, H.S. 1987. In: de Hoog G.S., Smith M.T., Weijman A.C.M. (eds.), Proceedings of an international symposium on the perspectives of taxonomy, ecology and phylogeny of yeasts and yeast-like fungi. CBS, Delft; Elsevier Science Publishers, Amsterdam.Google Scholar
  104. Vishniac, H.S.1985a. Int. J. Syst. Bacteriol., 35:119–122.Google Scholar
  105. Vishniac, H.S. 1985b. Mycologia, 77: 149–153.CrossRefGoogle Scholar
  106. Vishniac, H.S. 1995. Microbial Ecol., 30: 309–320.CrossRefGoogle Scholar
  107. Vishniac, H.S. 1996. Biodivers. Conserv., 5: 1365–1378.CrossRefGoogle Scholar
  108. Vishniac, H.S. 1999. In: Seckbach J. (ed.), Enigmatic microorganisms and life in extreme environ ments, Kluwer Academic Publishers, The Netherlands. pp. 317–324.Google Scholar
  109. Vishniac, H.S. and Baharaeen, S. 1982. 32: 437–445.Google Scholar
  110. Vishniac, H.S. and Hempfling, W.P. 1979a. Int. J. System. Bacteriol., 29: 153–158.CrossRefGoogle Scholar
  111. Vishniac, H.S. and Hempfling, W.P. 1979b. J. Gen. Microbiol., 112: 301–314.Google Scholar
  112. Vishniac, H.S. and Kurtzman, C.P. 1992. Int. J. Syst. Bacteriol., 42: 547–553.Google Scholar
  113. Vishniac, H.S., and Onofri, S. 2003. Antonie Van Leeuwenhoek, 83: 231–233.CrossRefGoogle Scholar
  114. Vishniac, V.W. and Mainzer, S.E. 1972. Antarct J. US, 7: 88–89.Google Scholar
  115. Wada, H. and Murata, N. 1990. Plant Physiol., 92: 1062–1069.CrossRefGoogle Scholar
  116. Watson, K. 1987. Rose, A.H. and Harrison, J.S. (eds.), The yeasts, In: 2nd edn., vol.2, Academic Press, London, UK. pp. 41–47.Google Scholar
  117. Wynn-Williams, D.D. 1990. Adv. Microbial. Ecol., 11: 71–146.Google Scholar
  118. Xin, M.X. and Zhou, P.J. 2007. J. Zhejiang Univ. Sci. B, 8: 260–265.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  • S. Shivaji
    • 1
  • G. S. Prasad
    • 2
  1. 1.Centre for Cellular and Molecular BiologyHyderabadIndia
  2. 2.Institute of Microbial TechnologyChandigarhIndia

Personalised recommendations