Stem Cells pp 75-94

The Stem Cell System of the Basal Flatworm Macrostomum lignano

  • Peter Ladurner
  • Bernhard Egger
  • Katrien De Mulder
  • Daniela Pfister
  • Georg Kuales
  • Willi Salvenmoser
  • Lukas Schärer

The scope of this review is to introduce the free-living flatworm Macrostomum lignano as an excellent model organism to address questions of platyhelminth stem cell biology. First, we sketch the historical origin of flatworm stem cell research. Second, we introduce M. lignano, and summarize the main advantages that we think it has over the classical planarian model. Third, we give a short summary of the simple culture techniques. Fourth, we give a detailed overview over its morphology and embryology as far as it is relevant for stem cell biology. Fifth, we summarize our main findings on stem cell biology, with respect to the identification of neoblasts, their distribution and number. We describe the ultrastructure of neoblasts, their dynamics and gene expression. Sixth, we outline ways to study sex allocation by means of stem cell labeling and manipulation. Last, we highlight the regeneration capacity of this species and link it to the stem cell system. We conclude that M. lignano is a highly suitable model organism to gain knowledge about flatworm stem cells and to provide insight into stem cell systems of higher organisms, including humans.

Keywords

Platyhelminthes neoblast Planaria evolution regeneration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agata, K., 2003. Regeneration and gene regulation in planarians. Curr. Opin. Genet. Dev. 13, 492–496.CrossRefPubMedGoogle Scholar
  2. Andersen, R.A., Berges, J.A., Harrison, P.J., and Watanabe, M.M., 2007. Recipes for freshwater and seawater media. In: Andersen, R.A. (Ed.), Algal Culturing Techniques, Elsevier, Amsterdam, pp. 429–538.Google Scholar
  3. Baguñà, J., 1976a. Mitosis in the intact and regenerating Planarian Dugesia mediterranea n.sp. I. Mitotic studies during growth, feeding and starvation. J. Exp. Zool. 195, 53–64.CrossRefGoogle Scholar
  4. Baguñà, J., 1976b. Mitosis in the Intact and Regenerating Planarian Dugesia mediterranea n.sp. II. Mitotic studies during Regeneration, and a Possible Mechanism of Blastema Formation. J. Exp. Zool. 195, 65–80.CrossRefGoogle Scholar
  5. Baguñà, J., 1981. Planarian neoblasts. Nature 290, 14–15.CrossRefGoogle Scholar
  6. Baguñà, J. and Romero, R., 1981. Quantitative analysis of cell types during growth, degrowth and regeneration in the planarians Dugesia mediterranea and Dugesia tigrina. Hydrobiologia 84, 181–194.CrossRefGoogle Scholar
  7. Baguñà, J., Salo, E., and Auladell, C., 1989. Regeneration and pattern formation in planarians III. Evidence that neoblasts are totipotent stem cells and the source of blastema cells. Development 107, 77–86.Google Scholar
  8. Bode, A., Salvenmoser, W., Nimeth, K., Mahlknecht, M., Adamski, Z., Rieger, R.M., Peter, R., and Ladurner, P., 2006. Immunogold-labeled S-phase neoblasts, total neoblast number, their distribution, and evidence for arrested neoblasts in Macrostomum lignano (Platyhelminthes, Rhabditophora). Cell Tissue Res. 325, 577–587.CrossRefPubMedGoogle Scholar
  9. Brøndsted, H.V., 1969. Planarian Regeneration. Pergamon Press, Oxford.Google Scholar
  10. Cardona, A., Hartenstein, V., and Romero, R., 2005. The embryonic development of the triclad Schmidtea polychroa. Dev. Genes Evol. 215, 109–131.CrossRefPubMedGoogle Scholar
  11. Cardona, A., Hartenstein, V., and Romero, R., 2006. Early embryogenesis of planaria: a cryptic larva feeding on maternal resources. Dev. Genes Evol. 216, 667–681.CrossRefPubMedGoogle Scholar
  12. Cebria, F., Guo, T., Jopek, J., and Newmark, P.A., 2007. Regeneration and maintenance of the planarian midline is regulated by a slit orthologue. Dev. Biol. 307, 394–406.CrossRefPubMedGoogle Scholar
  13. Cebria, F., Kobayashi, C., Umesono, Y., Nakazawa, M., Mineta, K., Ikeo, K., Gojobori, T., Itoh, M., Taira, M., Sanchez, Alvarado A., and Agata, K., 2002. FGFR-related gene nou-darake restricts brain tissues to the head region of planarians. Nature 419, 620–624.CrossRefPubMedGoogle Scholar
  14. Charnov, E.L., 1979. Simultaneous hermaphroditism and sexual selection. Proc. Natl. Acad. Sci. U S A 76, 2480–2484.CrossRefPubMedGoogle Scholar
  15. Charnov, E.L., 1982. The Theory of Sex Allocation. Princeton University Press, Princeton, NJ, USA.Google Scholar
  16. Egger, B., Gschwentner, R., and Rieger, R., 2007. Free-living flatworms under the knife: past and present. Dev. Genes Evol. 217, 89–104.CrossRefPubMedGoogle Scholar
  17. Egger, B. and Ishida, S., 2005. Chromosome fission or duplication in Macrostomum lignano (Macrostomorpha, Plathelminthes) - remarks on chromosome numbers in ‘archoophoran turbellarians’. J. Zool. Syst. Evol. Res. 43, 127–132.CrossRefGoogle Scholar
  18. Egger, B., Ladurner, P., Nimeth, K., Gschwentner, R., and Rieger, R., 2006. The regeneration capacity of the flatworm Macrostomum lignano - on repeated regeneration, rejuvenation, and the minimal size needed for regeneration. Dev. Genes Evol. 216, 565–577.CrossRefPubMedGoogle Scholar
  19. Gustafsson, M.K., 1976. Studies on cytodifferentiation in the neck region of Diphyllobothrium dendriticum Nitzsch, 1824 (Cestoda, Pseudophyllidea). Z. Parasitenkd. 50, 323–329.CrossRefPubMedGoogle Scholar
  20. Gustafsson, M.K. and Eriksson, K., 1992. Never ending growth and a growth factor. I. Immunocytochemical evidence for the presence of basic fibroblast growth factor in a tapeworm. Growth Factors 7, 327–334.CrossRefPubMedGoogle Scholar
  21. Higuchi, S., Hayashi, T., Hori, I., Shibata, N., Sakamoto, H., and Agata, K., 2007. Characterization and categorization of fluorescence activated cell sorted planarian stem cells by ultrastructural analysis. Dev. Growth Differ. 49, 571–581.PubMedGoogle Scholar
  22. Hori, I., 1997. Cytological approach to morphogenesis in the planarian blastema. II. The effect of neuropeptides. J. Submicrosc. Cytol. Pathol. 29, 91–97.PubMedGoogle Scholar
  23. Kobayashi, C., Saito, Y., Ogawa, K., and Agata, K., 2007. Wnt signaling is required for antero-posterior patterning of the planarian brain. Dev. Biol. 306, 714–724.CrossRefPubMedGoogle Scholar
  24. Ladurner, P., Pfister, D., Seifarth, C., Schärer, L., Mahlknecht, M., Salvenmoser, W., Gerth, R., Marx, F., and Rieger, R., 2005a. Production and characterization of cell- and tissue-specific monoclonal antibodies for the flatworm Macrostomum sp. Histochem. Cell Biol. 123, 89–104.Google Scholar
  25. Ladurner, P., Rieger, R., and Baguñà, J., 2000. Spatial distribution and differentiation potential of stem cells in hatchlings and adults in the marine platyhelminth Macrostomum sp.: A Bromodeoxyuridine analysis. Dev. Biol. 226, 231–241.CrossRefPubMedGoogle Scholar
  26. Ladurner, P., Schärer, L., Salvenmoser, W., and Rieger, R.M., 2005b. Macrostomum lignano, n. sp. (Rhabditophora, Macrostomorpha): a new model organism among the lower Bilateria and the use of digital video microscopy in taxonomy of meiobenthic Platyhelminthes. J. Zool. Syst. Evol. Res. 43(2), 114–126.CrossRefGoogle Scholar
  27. Michiels, N.K., (1998) Mating conflicts and sperm competition in simultaneous hermaphrodites. Sperm competition and sexual selection, Academic Press, London, pp. 219–254.Google Scholar
  28. Morita, M., 1995. Structure and function of the reticular cell in the planarian Dugesia dorotocephala. Hydrobiologia 305, 189–196.CrossRefGoogle Scholar
  29. Morris, J., Ladurner, P., Rieger, R., Pfister, D., Del Mar De Miguel-Bonet, Jacobs, D., and Hartenstein, V., 2006. The Macrostomum lignano EST database as a molecular resource for studying platyhelminth development and phylogeny. Dev. Genes Evol. 216, 695–707.CrossRefPubMedGoogle Scholar
  30. Morris, J., Ramachandra, N.B., Ladurner, P., Egger, B., Rieger, R., and Hartenstein, V., 2004. The embryonic development of the flatworm Macrostomum sp. Dev. Genes Evol. 214, 220–239.CrossRefPubMedGoogle Scholar
  31. Newmark, P.A., 2005. Opening a new can of worms: a large-scale RNAi screen in planarians. Dev. Cell 8, 623–624.CrossRefPubMedGoogle Scholar
  32. Newmark, P.A. and Sanchez, Alvarado A., 2000. Bromodeoxyuridine specifically labels the regenerative stem cells of planarians. Dev. Biol. 220, 142–153.CrossRefPubMedGoogle Scholar
  33. Nimeth, K., Ladurner, P., Gschwentner, R., Salvenmoser, W., and Rieger, R., 2002. Cell renewal and apoptosis in Macrostomum sp [Lignano]. Cell Biol. Int. 26, 801–815.CrossRefPubMedGoogle Scholar
  34. Nimeth, K.T., Mahlknecht, M., Mezzanato, A., Peter, R., Rieger, R., and Ladurner, P., 2004. Stem cell dynamics during growth, feeding, and starvation in the basal flatworm Macrostomum sp. (Platyhelminthes). Dev. Dyn. 230, 91–99.CrossRefPubMedGoogle Scholar
  35. Nimeth, K.T., Egger, B., Rieger, R., Salvenmoser, W., Peter, R., and Gschwentner, R., 2007. Regeneration in Macrostomum lignano (Platyhelminthes): cellular dynamics in the neoblast stem cell system. Cell Tissue Res. 327, 637–646.CrossRefPubMedGoogle Scholar
  36. Palmberg, I., 1990. Stem cells in microturbellarians. Protoplasma 158, 109–120.CrossRefGoogle Scholar
  37. Pedersen, K.J., 1959. Cytological studies on the planarian neoblast. Zeitschr. Zellforsch. 50, 799–817.CrossRefGoogle Scholar
  38. Peter, R., Ladurner, P., and Rieger, R.M., 2001. The role of stem cell strategies in coping with environmental stress and choosing between alternative reproductive modes: Turbellaria rely on a single cell type to maintain individual life and propagate species. Mar. Ecol. - P S Z N I 22, 35–51.CrossRefGoogle Scholar
  39. Pfister, D., De, Mulder K., Philipp, I., Kuales, G., Hrouda, M., Eichberger, P., Borgonie, G., Hartenstein, V., and Ladurner, P., 2007. The exceptional stem cell system of Macrostomum lignano: Screening for gene expression and studying cell proliferation by hydroxyurea treatment and irradiation. Front Zool 4, 9.CrossRefPubMedGoogle Scholar
  40. Philippe, H., Brinkmann, H., Martinez, P., Riutort, M., and Baguñà, J., 2007. Acoel flatworms are not platyhelminthes: evidence from phylogenomics. PLoS ONE. 2, e717.CrossRefPubMedGoogle Scholar
  41. Reddien, P.W., Oviedo, N.J., Jennings, J.R., Jenkin, J.C., and Sanchez, Alvarado A., 2005. SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells. Science 310, 1327–1330.CrossRefPubMedGoogle Scholar
  42. Rieger, R.M., Ladurner, P., Reiter, D., Asch, E., Salvenmoser, W., Schürmann, W., and Peter, R., 1999. Ultrastructure of neoblasts in microturbellaria: significance for understanding stem cells in free-living Platyhelminthes. Invertebr. Reprod. Dev. 35, 127–140.Google Scholar
  43. Rieger, R.M., Salvenmoser, W., Legniti, A., and Tyler, S., 1994. Phalloidin-Rhodamine preparations of Macrostomum hystricinum marinum (Plathelminthes) - morphology and postembryonic development of the musculature. Zoomorphology 114, 133–147.CrossRefGoogle Scholar
  44. Rieger, R.M., Tyler, S., Smith, J.P.S., and Rieger, G., 1991. Platyhelminthes: Turbellaria. In: Harrison, F.W. and Bogitsh B.J. (Eds.), Microscopic Anatomy of Invertebrates, Vol. 3. Wiley-Liss, New York, pp. 7–140.Google Scholar
  45. Rossi, L., Salvetti, A., Lena, A., Batistoni, R., Deri, P., Pugliesi, C., Loreti, E., and Gremigni, V., 2006. DjPiwi-1, a member of the PAZ-Piwi gene family, defines a subpopulation of planarian stem cells. Dev. Genes Evol. 216, 335–346.CrossRefPubMedGoogle Scholar
  46. Rossi, L., Salvetti, A., Marincola, F.M., Lena, A., Deri, P., Mannini, L., Batistoni, R., Wang, E., and Gremigni, V., 2007. Deciphering the molecular machinery of stem cells: a look at the neoblast gene expression profile. Genome Biol. 8, R62.CrossRefPubMedGoogle Scholar
  47. Salo, E., 2006. The power of regeneration and the stem-cell kingdom: freshwater planarians (Platyhelminthes). Bioessays 28, 546–559.CrossRefPubMedGoogle Scholar
  48. Salvenmoser, W., Riedl, D., Ladurner, P., and Rieger, R., 2001. Early steps in the regeneration of the musculature in Macrostomum sp. (Macrostomorpha, Platyhelminthes). Belg. J. Zool. 131 (Suppl. 1), 105–110.Google Scholar
  49. Salvetti, A., Rossi, L., Deri, P., and Batistoni, R., 2000. An MCM2-related gene is expressed in proliferating cells of intact and regenerating planarians. Dev. Dyn. 218, 603–614.CrossRefPubMedGoogle Scholar
  50. Salvetti, A., Rossi, L., Lena, A., Batistoni, R., Deri, P., Rainaldi, G., Locci, M.T., Evangelista, M., and Gremigni, V., 2005. DjPum, a homologue of Drosophila Pumilio, is essential to planarian stem cell maintenance. Development 132, 1863–1874.CrossRefPubMedGoogle Scholar
  51. Sanchez, Alvarado A., Newmark, P.A., Robb, S.M., and Juste, R., 2002. The Schmidtea mediterranea database as a molecular resource for studying platyhelminthes, stem cells and regeneration. Development 129, 5659–5665.CrossRefGoogle Scholar
  52. Schärer, L., Knoflach, D., Vizoso, D.B., Rieger, G., and Peintner, U., 2007a. Thraustochytrids as novel parasitic protists of marine free-living flatworms: Thraustochytrium caudivorum sp. nov. parasitizes Macrostomum lignano. Marine Biol. 152, 1095–1104.CrossRefGoogle Scholar
  53. Schärer, L. and Ladurner, P., 2003. Phenotypically plastic adjustment of sex allocation in a simultaneous hermaphrodite. Proc. R. Soc. Lond. B Biol. Sci. 270, 935–941.CrossRefGoogle Scholar
  54. Schärer, L., Ladurner, P., and Rieger, R.M., 2004. Bigger testes do work more: experimental evidence that testis size reflects testicular cell proliferation activity in the marine invertebrate, the free-living flatworm Macrostomum sp. Behav. Ecol. Sociobiol. 56, 420–425.CrossRefGoogle Scholar
  55. Schärer, L. and Vizoso, D.B., 2007. Phenotypic plasticity in sperm production rate: there’s more to it than testis size. Evol. Ecol. 21, 295–306.CrossRefGoogle Scholar
  56. Schärer, L., Zaubzer, J., Salvenmoser, W., Seifarth, C., and Ladurner, P., 2007. Tracking sperm of a donor in a recipient: an immunocytochemical approach. Animal Biol. 57, 121–136.CrossRefGoogle Scholar
  57. Seilern-Aspang, F., 1957. Die Entwicklung von Macrostomum appendiculatum (Fabricius). Zool. Jahrb. Anat. 76, 311–330.Google Scholar
  58. Stearns, S.C., 1992. The Evolution of Life Histories. Oxford University Press, Oxford.Google Scholar
  59. Vizoso, D.B. and Schärer, L., 2007. Resource-dependent sex-allocation in a simultaneous hermaphrodite. J. Evol. Biol. 20, 1046–1055.CrossRefPubMedGoogle Scholar
  60. Wolff, E. and Dubois, F., 1948. Sur la migration des cellules de régénération chez les planaries. Rev. Suisse Zool. 55, 218–227.Google Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Peter Ladurner
    • 1
  • Bernhard Egger
    • 1
  • Katrien De Mulder
    • 1
  • Daniela Pfister
    • 1
  • Georg Kuales
    • 1
  • Willi Salvenmoser
    • 1
  • Lukas Schärer
    • 2
  1. 1.Institute of ZoologyUniversity of InnsbruckAustria
  2. 2.Evolutionary Biology, Zoological InstituteUniversity of BaselBaselSwitzerland

Personalised recommendations