Stem Cells pp 37-57 | Cite as

Stem Cells in Immortal Hydra

  • Thomas C. G. Bosch

Hydra’s potential immortality and extensive capacity to regenerate and self-renew is due to the presence of three distinct stem cell lineages: ectodermal and endodermal epithelial stem cells, and interstitial stem cells. Over the last few years, stem cells in Hydra became well-defined in cellular terms of their biology. More recently, efforts using the nearly unlimited potential for tissue manipulation combined with functional transgenesis have shed light on the molecular control mechanisms involved. Here I review those efforts in an attempt to give both a historical perspective and an update on the recent experimental highlights. In particular, I will focus on six aspects of stem cells in Hydra: (i) their continuous transition through the proliferation/differentiation switch; (ii) their rapid responses to signals from the cellular environment; (iii) the emerging importance of Wnt and Notch signaling in controlling stem cell behavior; (iv) the role of chromatin modification in terminal differentiation; (v) the observation of transdifferentiation in some of the stem cell progeny; and (vi) the implications for the evolution of germ cells, ageing and cancer. Together, these findings seem to indicate that Hydra not only provides insights into signalling pathways involved in stem cell differentiation in the Bilaterian ancestor; they also demonstrate that despite morphological and functional differences, and more than 500 million years of phylogenic separation between Hydra and human, common signaling pathways are responsible for stem cell maintenance, lineage determination, and differentiation.


Epithelial stem cell evolution of development Hydra interstitial stem cell Notch senescence Wnt Weismann’s doctrine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Azuara V, Perry P, Sauer S, Spivakov M, Jorgensen HF, John RM, Gouti M, Casanova M, Warnes G, Merkenschlager M, Fisher AG (2006) Chromatin signatures of pluripotent cell lines. Nat. Cell. Biol. 8(5):532–538.PubMedCrossRefGoogle Scholar
  2. Blackstone NW (2006) Multicellular redox regulation: integrating organismal biology and redox chemistry. Bioessays 28(1):72–77.PubMedCrossRefGoogle Scholar
  3. Blackstone NW (2007) A food’s-eye view of the transition from basal metazoans to bilaterians. Integr. Comp. Biol. 1–10. Doi:10.1093/icb/icm056.Google Scholar
  4. Bode HR, Heimfeld S, Chow MA, Huang LW. (1987) Gland cells arise by differentiation from interstitial cells in Hydra attenuata. Dev. Biol. 122(2):577–585.PubMedCrossRefGoogle Scholar
  5. Bosch TCG (2004) Control of asymmetric cell divisions: will cnidarians provide an answer? BioEssays 26(9):929–931.PubMedCrossRefGoogle Scholar
  6. Bosch TCG (2007a) Why polyps regenerate and we don’t: towards a cellular and molecular framework for Hydra regeneration. Dev. Biol. 303 (2):421–433.PubMedCrossRefGoogle Scholar
  7. Bosch TCG (2007b) Symmetry breaking in stem cells of the basal metazoan Hydra. Prog. Mol. Subcell. Biol. 45:61–78.PubMedCrossRefGoogle Scholar
  8. Bosch TCG, David CN(1984). Growth regulation in Hydra: relationship between epithelial cell cycle length and growth rate. Dev. Biol. 104:161–171.PubMedCrossRefGoogle Scholar
  9. Bosch TCG, David CN (1987). Stem cells of Hydra magnipapillata can differentiate into somatic cells and germ line cells. Dev. Biol. 121:182–191.CrossRefGoogle Scholar
  10. Bosch TCG, David CN (1990). Cloned interstitial stem cells grow as contiguous patches in hydra. Dev. Biol. 138: 513–515.PubMedCrossRefGoogle Scholar
  11. Bosch TCG, Rollbühler R, Scheider B, David CN (1991). Role of the cellular environment in interstitial stem cell proliferation in hydra. Roux’s Arch. Dev. Biol. 200:269–276.CrossRefGoogle Scholar
  12. Bosch TCG, Fujisawa T (2001) Polyps, peptides and patterning. BioEssays 23(5):420–427.PubMedCrossRefGoogle Scholar
  13. Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, Rando TA (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317(5839):807–810.PubMedCrossRefGoogle Scholar
  14. Brien P (1966) Biologie de la reproduction animale. Masson & Cie, Paris.Google Scholar
  15. Broun M, Gee L, Reinhardt B, Bode HR (2005) Formation of the head organizer in hydra involves the canonical Wnt pathway. Development 132(12):2907–2916.PubMedCrossRefGoogle Scholar
  16. Buss LW (1987) The evolution of individuality. Princeton University Press, Princeton.Google Scholar
  17. Buss LW, Green DR (1985) Histoincompatibility in vertebrates: the relict hypothesis. Dev. Comp. Immunol. 9(2):191–201. Review.PubMedCrossRefGoogle Scholar
  18. Campbell RD (1967) Tissue dynamics of steady state growth in Hydra littoralis. I. Patterns of cell division. Dev. Biol. 15(5):487–502.PubMedCrossRefGoogle Scholar
  19. Clarke MF, Fuller M. (2006) Stem cells and cancer: two faces of eve. Cell 124(6):1111–1115.PubMedCrossRefGoogle Scholar
  20. Collins AG (1998) Evaluating multiple alternative hypotheses for the origin of Bilateria: an analysis of 18S rRNA molecular evidence. Proc Natl Acad Sci U S A. 95(26):15458–15463.PubMedCrossRefGoogle Scholar
  21. David CN, Campbell RD (1972) Cell cycle kinetics and development of Hydra attenuata. I. Epithelial cells. J Cell Sci. 11(2):557–568.PubMedGoogle Scholar
  22. David CN, Challoner D (1974) Distribution of interstitial cells and differentiating nematocytes in nests in Hydra attenuata. Am. Zool. 14:537–542.Google Scholar
  23. David CN, Murphy S (1977) Characterization of interstitial stem cells in hydra by cloning. Dev. Biol. 58(2):372–383.PubMedCrossRefGoogle Scholar
  24. David CN, Gierer A (1974) Cell cycle kinetics and development of Hydra attenuata. III. Nerve and nematocyte differentiation. J. Cell. Sci. 16(2):359–375.PubMedGoogle Scholar
  25. David CN, Plotnick I (1980) Distribution of interstitial stem cells in Hydra. Dev. Biol. 76(1):175–184.PubMedCrossRefGoogle Scholar
  26. Dübel S, Hoffmeister SA, Schaller HC (1987) Differentiation pathways of ectodermal epithelial cells in hydra. Differentiation 35(3):181–189.PubMedGoogle Scholar
  27. Duncan AW, Rattis FM, DiMascio LN, Congdon KL, Pazianos G, Zhao C, Yoon K, Cook JM, Willert K, Gaiano N, Reya T. (2005) Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat. Immunol. 6(3):314–322.PubMedCrossRefGoogle Scholar
  28. Fujisawa T. (1989) Role of interstitial cell migration in generating position-dependent patterns of nerve cell differentiation in Hydra. Dev Biol. 133(1):77–82.PubMedCrossRefGoogle Scholar
  29. Fujisawa T, David CN, Bosch TCG (1990) Transplantation stimulates interstitial cell migration in hydra. Dev Biol. 138(2):509–512.PubMedCrossRefGoogle Scholar
  30. Geling A, Steiner H, Willem M, Bally-Cuif L, Haass C (2002) A gamma-secretase inhibitor blocks Notch signaling in vivo and causes a severe neurogenic phenotype in zebrafish. EMBO Rep. 3(7):688–694.PubMedCrossRefGoogle Scholar
  31. Genikhovich G, Kürn U, Hemmrich G, Bosch TCG (2006) Discovery of genes expressed in Hydra embryogenesis. Dev. Biol. 289(2):466–481.PubMedCrossRefGoogle Scholar
  32. Gierer A, Berking S, Bode H, David CN, Flick K, Hansmann G, Schaller H, Trenkner E (1972) Regeneration of hydra from reaggregated cells. Nat. New Biol. 239(91):98–101.PubMedGoogle Scholar
  33. Hager G, David CN. (1997) Pattern of differentiated nerve cells in hydra is determined by precursor migration. Development 124(2):569–576.PubMedGoogle Scholar
  34. Heimfeld S, Bode HR. (1984) Interstitial cell migration in Hydra attenuata. I. Quantitative description of cell movements. Dev. Biol. 105(1):1–9.PubMedCrossRefGoogle Scholar
  35. Hobmayer B, Rentzsch F, Kuhn K, Happel CM, von Laue CC, Snyder P, Rothbacher U, Holstein TW (2000) WNT signalling molecules act in axis formation in the diploblastic metazoan Hydra. Nature 407(6801):186–189.PubMedCrossRefGoogle Scholar
  36. James J, Das AV, Rahnenfuhrer J, Ahmad I (2004) Cellular and molecular characterization of early and late retinal stem cells/progenitors: differential regulation of proliferation and context dependent role of Notch signaling. J. Neurobiol. 61(3):359–376.PubMedCrossRefGoogle Scholar
  37. Käsbauer T, Towb P, Alexandrova O, David CN, Dall’armi E, Staudigl A, Stiening B, Bottger A (2007) The Notch signaling pathway in the cnidarian Hydra. Dev. Biol. 303(1):376–390.PubMedCrossRefGoogle Scholar
  38. Khalturin K, Anton-Erxleben F, Milde S, Plötz C, Wittlieb J, Hemmrich G, Bosch TCG (2007) Transgenic stem cells in Hydra reveal an early evolutionary origin for key elements controlling self-renewal and differentiation. Dev. Biol. 309(1):32–44.PubMedCrossRefGoogle Scholar
  39. Kirmizis A, Bartley SM, Kuzmichev A, Margueron R, Reinberg D, Green R, Farnham PJ. (2004) Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Genes Dev. 18(13):1592–1605.PubMedCrossRefGoogle Scholar
  40. Kortschak RD, Samuel G, Saint R, Miller DJ (2003) EST analysis of the cnidarian Acropora millepora reveals extensive gene loss and rapid sequence divergence in the model invertebrates. Curr. Biol. 13(24):2190–2195.PubMedCrossRefGoogle Scholar
  41. Kuzmichev A, Jenuwein T, Tempst P, Reinberg D (2004) Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3. Mol. Cell. 14(2):183–193.PubMedCrossRefGoogle Scholar
  42. Liu H, Fergusson MM, Castilho RM, Liu J, Cao L, Chen J, Malide D, Rovira II, Schimel D, Kuo CJ, Gutkind JS, Hwang PM, Finkel T (2007) Augmented Wnt signaling in a mammalian model of accelerated aging. Science 317(5839):803–806.PubMedCrossRefGoogle Scholar
  43. Martinez DE (1998) Mortality patterns suggest lack of senescence in hydra. Exp. Gerontol. 33(3):217–225.PubMedCrossRefGoogle Scholar
  44. Martinez DE (2002) Senescence and rejuvenation in asexual metazoans. In: Hughes RB, editor. Reproductive biology of the invertebrates. XI progress in asexual reproduction. New York: Wiley, pp. 115–140.Google Scholar
  45. Metcalf D. (2007) Concise review: hematopoietic stem cells and tissue stem cells: current concepts and unanswered questions. Stem Cells 25(10):2390–2395.PubMedCrossRefGoogle Scholar
  46. Miller DJ, Ball EE, Technau U (2005) Cnidarians and ancestral genetic complexity in the animal kingdom. Trends Genet. 21(10):536–539.PubMedCrossRefGoogle Scholar
  47. Miller DJ, Hemmrich G, Ball EE, Hayward DC, Khalturin K, Funayama N, Agata K, Bosch TCG (2007) The innate immune repertoire in cnidaria–ancestral complexity and stochastic gene loss. Genome Biol. 8(4):R59.PubMedCrossRefGoogle Scholar
  48. Mochizuki K, Sano H, Kobayashi S, Nishimiya-Fujisawa C, Fujisawa T (2000) Expression and evolutionary conservation of nanos-related genes in Hydra. Dev. Genes Evol. 210(12):591–602.PubMedCrossRefGoogle Scholar
  49. Mochizuki K, Nishimiya-Fujisawa C, Fujisawa T (2001) Universal occurrence of the vasa-related genes among metazoans and their germline expression in Hydra. Dev. Genes Evol. 211(6):299–308.PubMedCrossRefGoogle Scholar
  50. Nencioni A, Grunebach F, Patrone F, Ballestrero A, Brossart P (2006) The proteasome and its inhibitors in immune regulation and immune disorders. Crit. Rev. Immunol. 26(6):487–498.PubMedGoogle Scholar
  51. Nüchter T, Benoit M, Engel U, Ozbek S, Holstein TW (2006) Nanosecond-scale kinetics of nematocyst discharge. Curr. Biol. 16(9):R316–R318.PubMedCrossRefGoogle Scholar
  52. Peters L, Meister G. (2007) Argonaute proteins: mediators of RNA silencing. Mol. Cell. 26(5):611–623.PubMedCrossRefGoogle Scholar
  53. Philippe H, Lartillot N, Brinkmann H (2005) Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. Mol. Biol. Evol. 22(5):1246–1253.PubMedCrossRefGoogle Scholar
  54. Plath K, Fang J, Mlynarczyk-Evans SK, Cao R, Worringer KA, Wang H, de la Cruz CC, Otte AP, Panning B, Zhang Y (2003) Role of histone H3 lysine 27 methylation in X inactivation. Science 300(5616):131–135.PubMedCrossRefGoogle Scholar
  55. Raz E (2000) The function and regulation of vasa-like genes in germ-cell development. Genome Biol. 1(3):1017.CrossRefGoogle Scholar
  56. Rebscher N, Zelada-Gonzalez F, Banisch TU, Raible F, Arendt D (2007) Vasa unveils a common origin of germ cells and of somatic stem cells from the posterior growth zone in the polychaete Platynereis dumerilii. Dev Biol. 306(2):599–611.PubMedCrossRefGoogle Scholar
  57. Reya T, Clevers H. (2005) Wnt signalling in stem cells and cancer. Nature 434(7035):843–850.PubMedCrossRefGoogle Scholar
  58. Schmidt T, David CN (1986) Gland cells in Hydra: cell cycle kinetics and development. J Cell Sci. 85:197–215.PubMedGoogle Scholar
  59. Seto AG, Kingston RE, Lau NC (2007) The coming of age for Piwi proteins. Mol. Cell. 26(5):603–609.PubMedCrossRefGoogle Scholar
  60. Siebert S, Anton-Erxleben F, Bosch TCG (2008) Cell type complexity in the basal metazoan Hydra is maintained by both stem cell based mechanisms and transdifferentiation. Dev. Biol. 313(1):13–24.PubMedCrossRefGoogle Scholar
  61. Shimizu H, Bode HR (1995) Nematocyte differentiation in hydra: commitment to nematocyte type occurs at the beginning of the pathway. Dev Biol. 169(1):136–150.PubMedCrossRefGoogle Scholar
  62. Spivakov M, Fisher AG (2007) Epigenetic signatures of stem-cell identity. Nat. Rev. Genet. 8(4):263–271.PubMedCrossRefGoogle Scholar
  63. Takahashi T, Koizumi O, Ariura Y, Romanovitch A, Bosch TC, Kobayakawa Y, Mohri S, Bode HR, Yum S, Hatta M, Fujisawa T (2000) A novel neuropeptide, Hym-355, positively regulates neuron differentiation in Hydra. Development 127(5):997–1005.PubMedGoogle Scholar
  64. Tardent P (1995) The cnidarian cnidocyte, a high-tech cellular weaponry. BioEssays 17:351–362.CrossRefGoogle Scholar
  65. Tardent P (1974) Gametogenesis in the Genus Hydra. Amer. Zool. 14:447–456.Google Scholar
  66. Technau U, Holstein TW (1996) Phenotypic maturation of neurons and continuous precursor migration in the formation of the peduncle nerve net in Hydra. Dev. Biol. 177(2):599–615.PubMedCrossRefGoogle Scholar
  67. Technau U, Rudd S, Maxwell P, Gordon PM, Saina M, Grasso LC, Hayward DC, Sensen CW, Saint R, Holstein TW, Ball EE, Miller DJ (2005) Maintenance of ancestral complexity and non-metazoan genes in two basal cnidarians. Trends Genet. 21(12):633–639.PubMedCrossRefGoogle Scholar
  68. Teragawa CK, Bode HR (1990) Spatial and temporal patterns of interstitial cell migration in Hydra vulgaris. Dev. Biol. 138(1):63–81.PubMedCrossRefGoogle Scholar
  69. Teragawa CK, Bode HR (1995) Migrating interstitial cells differentiate into neurons in hydra. Dev Biol. 171(2):286–293.PubMedCrossRefGoogle Scholar
  70. Till JE, McCulloch EA (1963) Early repair processes in marrow cells irradiated and proliferating in vivo. Radiat. Res. 18:96–105.PubMedCrossRefGoogle Scholar
  71. Till JE, McCulloch EA (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat. Res. 14:213–222.PubMedCrossRefGoogle Scholar
  72. Trowbridge JJ, Xenocostas A, Moon RT, Bhatia M (2006) Glycogen synthase kinase-3 is an in vivo regulator of hematopoietic stem cell repopulation. Nat. Med. 12(1):89–98.PubMedCrossRefGoogle Scholar
  73. Valk-Lingbeek ME, Bruggeman SW, van Lohuizen M (2004) Stem cells and cancer; the polycomb connection. Cell 118(4):409–418.PubMedCrossRefGoogle Scholar
  74. Wang C, Lehmann R (1991) Nanos is the localized posterior determinant in Drosophila. Cell 66(4):637–647. Erratum in Cell 1992, 68(6):1177.PubMedCrossRefGoogle Scholar
  75. Weismann A (1883) Die Entstehung der Sexualzellen bei Hydramedusen. Fischer, Jena.Google Scholar
  76. Weismann A (1892) Das Keimplasma. Eine Theorie der Vererbung. Fischer, Jena.Google Scholar
  77. Wittlieb J, Khalturin K, Lohmann J, Anton-Erxleben F, Bosch TCG (2006) Transgenic Hydra allow in vivo tracking of individual stem cells during morphogenesis. Proc. Natl. Acad. Sci. U S A 103:6208–6211.PubMedCrossRefGoogle Scholar
  78. Yoshida K, Fujisawa T, Hwang JS, Ikeo K, Gojobori T (2006) Degeneration after sexual differentiation in hydra and its relevance to the evolution of aging. Gene 385:64–70.PubMedCrossRefGoogle Scholar
  79. Zacharias H, Anokhin B, Khalturin K, Bosch TCG (2004) Genome sizes and chromosomes in the basal metazoan Hydra. Zoology, 107:219–227.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Thomas C. G. Bosch
    • 1
  1. 1.Zoological InstituteChristian-Albrechts-UniversityGermany

Personalised recommendations