The Discrete Reaction Field approach for calculating solvent effects

  • Piet Th. Van Duijnen
  • Marcel Swart
  • Lasse Jensen
Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 6)

Abstract

We present here the discrete reaction field (DRF) approach, which is an accurate and efficient model for studying solvent effects on spectra, chemical reactions, solute properties, etc. The DRF approach uses a polarizable force field, which is (apart from the short-range repulsion) based entirely on second-order perturbation theory, and therefore ensures the correct analytical form of model potentials. The individual interaction components are modeled independently from each other, in a rigorous and straightforward way. The required force field parameters result as much as possible from quantum-chemical calculations and on monomer properties, thereby avoiding undesired fitting of these parameters to empirical data.

Because the physical description is correct and consistent, the method allows for arbitrary division of a system into different subsystems, which may be described either on the quantum-mechanical (QM) or the molecular mechanics (MM) level, without significant loss of accuracy. This allows for performing fully MM molecular simulations (Monte Carlo, molecular dynamics), which can subsequently be followed by performing QM/MM calculations on a selected number of representative snapshots from these simulations. These QM/MM calculations then give directly the solvent effects on emission or absorption spectra, molecular properties, organic reactions, etc

References

  1. 1.
    Ballhausen, C., (1965) private communication.Google Scholar
  2. 2.
    Warshel, A. and Levitt M., Theoretical studies of enzymatic reactions: dielectric, electrostatic, and steric stabilization of the carbenium ion in the reaction of Lysozyme. J. Mol. Biol.: (1976) 103 227–249.Google Scholar
  3. 3.
    Thole, B.T. and Duijnen P.Th. van, On the quantum mechanical treatment of solvent effects. Theor. Chim. Acta: (1980) 55 307–318.Google Scholar
  4. 4.
    Singh, U.C. and Kollman P.A., A combined ab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: applications to the CH 3 Cl + Cl exchange reaction and gas phase protonation of polyethers. J. Comput. Chem.: (1986) 7 718–730.Google Scholar
  5. 5.
    Bash, P.A., Field M.J. and Karplus M., Free Energy Perturbation Method for Chemical Reactions in the Condensed Phase: A Dynamical Approach Based on a Combined Quantum and Molecular Mechanics Potential. J. Am .Chem.Soc.: (1987) 109 8092–8094.Google Scholar
  6. 6.
    Field, M.J., Bash P.A. and Karplus M., A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J. Comput. Chem.: (1990) 11 700–733.Google Scholar
  7. 7.
    Karelson, M.M. and Zerner M.C., Theoretical treatment of solvent effects on electronic spectroscopy. J.Phys.Chem.: (1992) 96 6949–6957.Google Scholar
  8. 8.
    Luzhkov, V. and Warshel A., Microscopic models for quantum mechanical calculations of chemical processes in solutions: LD/AMPAC and SCAAS/AMPAC calculations of solvation energies. J. Comput. Chem.: (1992) 13 199–213.Google Scholar
  9. 9.
    Tomasi, J. and Persico M., Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem. Rev.: (1994) 94 2027–2094.Google Scholar
  10. 10.
    Vries, A.H. de, Duijnen P.Th. van, Juffer A.H., Rullmann J.A.C., Dijkman J.P., Merenga H. and Thole B.T., Implementation of reaction field methods in quantum chemistry codes. J. Comput. Chem.: (1995) 16 37–55;1445–1446.Google Scholar
  11. 11.
    Jansen, G., Colonna F. and Ángyán J.G., Mixed Quantum-Classical Calculations on the Water Molecule in Liquid Phase: Influence of a Polarizable Environment on Electronic Properties. Int. J. Quantum Chem.: (1996) 58 251.Google Scholar
  12. 12.
    Gao, J., Hybrid Quantum and Molecular Mechanical Simulations: An Alternative Avenue to Solvent Effects in Organic Chemistry. Accounts of Chemcal Research: (1996) 29 298–305.Google Scholar
  13. 13.
    Tuñón, I., Martins-Costa M. T. C, Millot C., Ruiz-López M. F. and Rivail J. L., A Coupled Density Functional-Molecular Mechanics Monte Carlo Simulation Method: The Water Molecule in Liquid Water. J.Comput.Chem.: (1996) 17 19–29.Google Scholar
  14. 14.
    Cramer, C.J. and Truhlar D.G., Implicit Solvation Models: Equilibria, Structure, Spectra, and Dynamics. Chem. Rev.: (1999) 99 2161–2200.Google Scholar
  15. 15.
    Orozco, M. and Luque F.J., Theoretical Methods for the Description of the Solvent Effect in Biomolecular Systems. Chem. Rev.: (2000) 100 4187–4225.Google Scholar
  16. 16.
    Poulsen, T.D., Ogilby P.R. and Mikkelsen K.V., Linear repsonse for solvated molecules MC/SCF/MM. J.Chem.Phys.: (2002) 116 3730–3738.Google Scholar
  17. 17.
    Tomasi, J., Thirty years of continuum solvation chemistry: a review, and prospects for the near future. Theor.Chem.Acc: (2004) 112 112–203.Google Scholar
  18. 18.
    Öhrn, A. and Karlström G., A theoretical study of the solvent shift to the n-p transition in formaldehyde with an effective discrete quantum chemical solvent model including non-electrostatic perturbation. Mol. Phys.: (2006) 104 3087–3099.Google Scholar
  19. 19.
    Barone, V., Cossi M. and Tomasi J., A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. J. Chem.Phys.: (1997) 107 3210–3221.Google Scholar
  20. 20.
    Swart, M., Rösler E. and Bickelhaupt F.M., Proton Affinities in Water of Maingroup-Element Hydrides. Effects of Hydration and Methyl Substitution. Eur. J. Inorg. Chem.: (2007) 3646–3654.Google Scholar
  21. 21.
    Chen, F. and Chipman D.M., Boundary element methods for dielectric cavity construction and integration. J. Chem.Phys.: (2003) 119 10289–10297.Google Scholar
  22. 22.
    Mennucci, B. and Tomasi J., Continuum solvation models: A new approach to the problem of solute’s charge distribution and cavity boundaries. J. Chem.Phys.: (1997) 106 5151–5158.Google Scholar
  23. 23.
    Cossi, M., Rega N., Scalmani G. and Barone V., Polarizable dielectric model of solvation with inclusion of charge penetration effects. J. Chem.Phys.: (2001) 114 5691–5701.Google Scholar
  24. 24.
    Duijnen, P.Th. van, Vries A.H. de, Swart M. and Grozema F.C., Polarizabilities in the Condensed Phase and the Local Fields Problem. A Direct Reaction Field formulation. J.Chem.Phys.: (2002) 117 8442–8453.Google Scholar
  25. 25.
    Rullmann, J.A.C. and Duijnen P.Th. van, Analysis of discrete and continuum dielectric models; application to the calculation of protonation energies in solution. Mol. Phys.: (1987) 61 293–311.Google Scholar
  26. 26.
    Jensen, L., M.Swart and Duijnen P.Th. van, Microscopic and macroscopic polarization within a combined quantum mechanics and molecuar mechanics model. J. Chem.Phys.: (2005) 122 034103.Google Scholar
  27. 27.
    Chalasinski, G. and Szczesniak M.M., Origins of Structure and Energetics of van der Waals Clusters from ab Initio Calculations. Chem. Rev.: (1994) 94 1723–1765.Google Scholar
  28. 28.
    Wesolowski, T. and Warshell A., Ab Initio Free Energy Perturbation Calculations of Solvation Free Energy Using the Frozen Density Functional Approach. J.Phys.Chem: (1994) 98 5183–5187.Google Scholar
  29. 29.
    Car, R. and Parinello M., Unified approach for molecular dynamics and density-functional theory. Phys.Rev.Lett.: (1985) 55 2471–2474.Google Scholar
  30. 30.
    Gao, J. and Thompson M.A., eds. Combined Quantum Mechanical and Molecular Mechanics Methods. Vol. 712. 1998, ACS: Washington, DC.Google Scholar
  31. 31.
    Jensen, L., Duijnen P.Th. van and Snijders J.G., A discrete solvent reaction field model for calculating molecular linear response properties in solution. J.Chem.Phys.: (2003) 119 12998–13006.Google Scholar
  32. 32.
    Jensen, L., Duijnen P.Th. van and Snijders J.G., A discrete reaction field model within density functional theory. J.Chem.Phys.: (2003) 118 514–521.Google Scholar
  33. 33.
    Batista, E.R., Xantheas S.S. and Jónsson H., Multipole moments of water molecules in clusters and ice Ih from first principles calculations. J. Chem.Phys.: (1999) 111 6011–6015.Google Scholar
  34. 34.
    DelleSite, L., Alevi A. and Lynden-Bell R.M., The electrostatic properties of water molecules in condensed phases: an ab initio study. Mol. Phys.: (1999) 96 1683–1693.Google Scholar
  35. 35.
    Jensen, L., Astrand P.-O., Osted O., Kongsted J. and Mikkelsen K.V., A dipole interaction model for the polarizability. J. Chem. Phys.: (2002) 116 4001–4010.Google Scholar
  36. 36.
    Engkvist, O., Åstrand P.-O. and Karlström G., Accurate Intermolecular Potentials Obtained from Molecular Wave Functions: Bridging the Gap between Quantum Chemistry and Molecular Simulations. Chem. Rev.: (2000) 100 4087–4108.Google Scholar
  37. 37.
    Tu, Y. and Laaksonen A., On the effect of Lennard-Jones parameters on the quantum mechanical and molecular mechanical coupling in a hybrid molecular dynamics simulation of liquid water. J. Chem.Phys.: (1999) 111 7519–7525.Google Scholar
  38. 38.
    Thole, B.T. and Duijnen P.Th. van, The direct reaction field hamiltonian: analysis of the dispersion term and application to the water dimer. Chem.Phys.: (1982) 71 211–220.Google Scholar
  39. 39.
    Brooks, B.R., Bruccoleri R.E., Olafson B.D., States D.J., Swaminathan S.J. and Karplus M., CHARMM: a program for macromolecular energy, minimization and dynamical calculations. J. Comput. Chem.: (1983) 4 187–217.Google Scholar
  40. 40.
    Rullmann, J.A.C. and Duijnen P.Th. van, A polarizable water model for calculation of hydration energies. Mol. Phys.: (1988) 63 451–475.Google Scholar
  41. 41.
    Rullmann, J.A.C., Bellido M.N. and Duijnen P.Th. van, The active site of Papain. All-atom study of interactions with protein matrix and solvent. J. Mol. Biol.: (1989) 206 101–118.Google Scholar
  42. 42.
    Ahlström, P., Wallqvist A., Engström S. and Jönsson B., A molecular dynamics study of polarizable water. Mol. Phys.: (1989) 68 563–581.Google Scholar
  43. 43.
    Kuwajima, S. and Warshel A., Incorporating Electric Polarizabilities in Water-Water Interaction Potentials. J.Phys. Chem.: (1990) 94 460–466.Google Scholar
  44. 44.
    Dang, L.X., Development of nonadditive intermolecular potentials using molecular-dynamics - solvation of Li+ and F- ions in polarizable water. J. Chem.Phys.: (1992) 96 6970–6977.Google Scholar
  45. 45.
    Soetens, J.-C. and Milot C., Effect of distributing multipoles and polarizabilities on molecular dynamics simulations of water. Chem. Phys. Lett.: (1995) 235 22–30.Google Scholar
  46. 46.
    Thomson, M.A. and Schenter G.K., Excited States of the Bacteriochlorophyll b Dimer of Rhodopseudomonas viridis: A QM/MM Study of the Photosynthetic Reaction Center That Includes MM Polarization. J. Phys. Chem.: (1995) 99 6374–386.Google Scholar
  47. 47.
    Day, P.N., Jensen J.H., Gordon M.S., Webb S.P., Stevens W. J., Krauss M., Garmer D., Bash H. and Cohen D., An effective fragment method for modeling solvent effects in quantum mechanical calculations. J. Chem.Phys.: (1996) 105 1968–1986.Google Scholar
  48. 48.
    Dang, L.X. and Chang T.-M., Molecular dynamics study of water clusters, liquid, and liquid–vapor interface of water with many-body potentials. J. Chem.Phys.: (1997) 106 8149–8159.Google Scholar
  49. 49.
    Gao, J., Energy components of aqueous solution: Insight from hybrid QM/MM simulations using a polarizable solvent model. J. Comput. Chem.: (1997) 18 1061–1071.Google Scholar
  50. 50.
    Burnham, C.J., Li J., Xantheas S. and Leslie M., The parametrization of a Thole-type all-atom polarizable water model from first principles and its application to the study of water clusters (n=2–21) and the phonon spectrum of ice Ih. J. Chem.Phys.: (1999) 110 4566–4581.Google Scholar
  51. 51.
    Halgren, T.A. and Damm W., Polarizable force fields. Curr. Opin. Struct. Biol.: (2001) 11 236–242.Google Scholar
  52. 52.
    Poulsen, T., Kongsted J., Osted A., Ogilby P.R. and Mikkelsen KV., The combined multiconfigurational self-consistent-field/molecular mechanics wave function approach. J. Chem.Phys.: (2001) 115 2393–2400.Google Scholar
  53. 53.
    Dupuis, M., Aida M., Kawahsima Y. and Hirao K., A polarizable mixed Hamiltonian model of electronic structure for micro-solvated excited states. I. Energy and gradients formulation and application to formaldehyde.. J.Chem.Phys.: (2002) 117 1242–1255.Google Scholar
  54. 54.
    Jorgensen, W.L., Chandraskhar J., Madura J.D., Impey R.W. and Klein M.L., Comparison of simple potential functions for simulating liquid water. J.Chem.Phys.: (1983) 79 926–935.Google Scholar
  55. 55.
    Rullmann, J.A.C. and Duijnen P.Th. van, Potential energy models of biological macromolecules: a case for ab initio quantum chemistry. CRC Reports in Molecular Theory: (1990) 1 1–21.Google Scholar
  56. 56.
    Kongsted, J., Osted A., Mikkelsen K.V. and Christiansen O., Molecular electric properties of liquid water calculated using the combined coupled cluster/molecular mechanics method. J. Mol.Struct. (THEOCHEM): (2003) 632 207–225.Google Scholar
  57. 57.
    Applequist, J., Carl J.R. and Fung J.K., Atom dipole interaction model for molecular polarizability. Application to polyatomic molecules and determination of atom polarizabilities. J.Am.Chem.Soc.: (1972) 94 2947–2952.Google Scholar
  58. 58.
    Silberstein, L., Molecular refractivity and atomic interaction. II. Philos.Mag: (1917) 33 521–533.Google Scholar
  59. 59.
    Thole, B.T., Molecular polarisabilities calculated with a modified dipole interaction. Chem.Phys.: (1981) 59 341–350.Google Scholar
  60. 60.
    Duijnen, P.Th. van and Swart M., Molecular and atomic polarizabilities. J.Phys.Chem.A.: (1998) 102 2399–2407.Google Scholar
  61. 61.
    Mooij, W.T.M., Duijneveld F.B. van, Rijdt J.G.C.M. van Duijneveldt-van de and Eijck B.P. van, Transferable ab Initio Intermolecular Potentials. 1. Derivation from Methanol Dimer and Trimer Calculations. J. Phys. Chem. A: (1999) 103 9872–9882.Google Scholar
  62. 62.
    Kaminski, G. A., Stern H. A., Berne B. J., Friesner R. A., Cao Y. X., Murphy R. B., Zhou R. and Halgren T. A., Development of a Polarizable Force Field For Proteins via Ab Initio Quantum Chemistry: First Generation Model and Gas Phase Tests. J.Comput.Chem.: (2002) 23 1515–1531.Google Scholar
  63. 63.
    Ren, P. and Ponder J.W., Consistent Treatment of Inter- and Intramolecular Polarization in Molecular Mechanics Calculations. J. Comput. Chem.: (2002) 23 1497–1506.Google Scholar
  64. 64.
    Kaminski, G. A., Friesner R. A. and Zhou R., A Computationally Inexpensive Modification of the Point Dipole Electrostatic Polarization Model for Molecular Simulations. J.Comput.Chem.: (2003) 24 267–276.Google Scholar
  65. 65.
    Yu, H. and Gunsteren W.F. van, Accounting for polarization in molecular simulation. Comp. Phys. Comm.: (2005) 172 69–85.Google Scholar
  66. 66.
    Elking, D., Darden T. and Woods R.J., Gaussian Induced Dipole Polarization Model. J. Comput. Chem.: (2006) 28 1261–1274.Google Scholar
  67. 67.
    Møller, C. and Plesset M.S., Note on an Approximation Treatment for Many-Electron Systems. Phys.Rev.: (1934) 46 618–622.Google Scholar
  68. 68.
    Breneman, C.M. and Wiberg K.B., Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J. Comput. Chem.: (1990) 11 361–373.Google Scholar
  69. 69.
    Swart, M., Duijnen P.Th. van and Snijders J.G., A charge analysis derived from an atomic multipole expansion. J.Comput.Chem.: (2001) 22 79–88.Google Scholar
  70. 70.
    Bachrach, S. M., ed. Population Analysis and Electron Densities from Quantum Mechanics. Reviews of Computational Chemistry, ed. K.B. Lipkowitz and D.B. Boyd. Vol. 5. 1994, VCH: Weinheim. 171–227.Google Scholar
  71. 71.
    Grozema, F., Zijlstra R.W.J. and Duijnen P.Th. van, Many-body interactions calculated with the direct reaction field model. Chem.Phys.: (1999) 246 217–227.Google Scholar
  72. 72.
    Bukowski, R., Szalewicz K., Groenenboom G.C. and Avoird A.van der, Predictions of the Properties of Water from First Principles. Science: (2007) 315 1249–1252.Google Scholar
  73. 73.
    Axilrod, P. M. and Teller E., Interaction of the van der Waals Type Between Three Atoms. J. Chem. Phys.: (1943) 11 299–300.Google Scholar
  74. 74.
    Duijnen, P.Th. van and Vries A.H. de, The "direct reaction field" force field: a consistent way to connect and combine quantum-chemical and classical descriptions of molecules. Int. J. Quantum Chem.: (1996) 60 1111–1132.Google Scholar
  75. 75.
    Broer, R., Duijnen P.Th. van and Nieuwpoort W.C., Ab initio molecular orbital calculations on the active site of papain. Chem. Phys. Lett.: (1976) 42 525–529.Google Scholar
  76. 76.
    Thole, B.T., Duijnen P.Th. van and Hol W.G.J., On the role of the active site a-helix in papain. Biophys. Chem.: (1979) 9 273–280.Google Scholar
  77. 77.
    Duijnen, P.Th. van, Thole B.T., Broer R. and Nieuwpoort W.C., Active-site a-helix in papain and the stability of the ion-pair RS …ImH +. Int. J. Quantum Chem.: (1980) 17 651–671.Google Scholar
  78. 78.
    Thole, B.T. and Duijnen P.Th. van, Reaction field effects on proton transfer in the active site of Actinidin. Biophysical Chemistry: (1983) 18 53–59.Google Scholar
  79. 79.
    Duijnen, P.Th. van and Thole B.T., Environmental effects on proton transfer. Ab initio calculations on systems in a semi-classical, polarizable environment., in Quantum Theory of Chemical Reactions., R. Daudel, et al., Editors. 1982, D.Reidel Publishing Company: Dordrecht. p. 85–95.Google Scholar
  80. 80.
    Dijkman, J.P. and Duijnen P.Th. van, Papain in aqueous solution and the role of Asp-158 in the mechanism: an ab initio SCF+DRF+BEM study. International Journal of Quantum Chemistry, Quantum Biology Symposium: (1991) 18 49–59.Google Scholar
  81. 81.
    Coutinho, K., Oliveira M.J.D. and Canuto S., Sampling configurations in Monte Carlo simulations for quantum mechanical studies of solvent effects. Int. J. Quantum Chem.: (1998) 66 249–253.Google Scholar
  82. 82.
    Coutinho, K. and Canuto S., The sequential Monte Carlo-quantum mechanics methodology. Application to the solvent effects in the Stokes shift of acetone in water. J. Mol.Struct. (THEOCHEM): (2003) 632 235–246.Google Scholar
  83. 83.
    Dupuis, M., Farazdel A., Karma S.P. and Maluendes S.A., HONDO: a general atomic and molecular electronic structure system, in MOTECC-90, E. Clementi, Editor. 1990, ESCOM: Leiden. p. 277–342.Google Scholar
  84. 84.
    Zerner, M.C., ZINDO, A General Semi-empirical Program Package. 1990, Quantum Theory Project, University of Florida: Gainesville (Fl.) USA.Google Scholar
  85. 85.
    Guest, M.F., Lenthe J.H. van, Kendrick J. and Sherwood P., GAMESS(UK). 1999, Daresbury Laboratory: Cheshire England.Google Scholar
  86. 86.
    Baerends, E.J., Autschbach J., Bérces A., Bickelhaupt F.M., Bo C., Boerrigter P.M., Cavallo L., Chong D.P., L. Deng, Dickson R.M., Duijnen P.Th. van, Ellis D.E., Faassen M. van, L. Fan T.H. Fischer, Guerra C. Fonseca, Gisbergen S.J.A. van, Groeneveld J.A., Gritsenko O.V., Grüning M., Harris F.E., Hoek P. van den, Jacob C.R., Jacobsen H., Jensen L., Kessel G. van, Kootstra F., Lenthe E. van, McCormack D.A., Michalak A., Neugebauer J., Nicu V.P., Osinga V.P., Patchkovskii S., Philipsen P.H.T., Post D., Pye C.C., Ravenek W., Ros P., Schipper P.R.T., Schreckenbach G., Snijders J.G., Solà M., Swart M., Swerhone D., Velde G. te, Vernooijs P., Versluis L., Visscher L., Visser O., Wang F., Wesolowski T.A., Wezenbeek E.M. van, Wiesenekker G., Wolff S.K., Woo T.K., Yakovlev A.L. and Ziegler T., Amsterdam Density Functional Theory. 2007, SCM: Amsterdam.Google Scholar
  87. 87.
    Swart, M. and Duijnen P.Th. van, DRF90: a Polarizable Force Field. Mol. Simul.: (2006) 32 471–484.Google Scholar
  88. 88.
    McWeeny, R., Methods of Molecular Quantum Mechanics. 1989, London: Academic Press.Google Scholar
  89. 89.
    Mehler, E.L., Self-consistent, nonorthogonal group function approximation for polyatomic systems. I. Closed shells. J.Chem.Phys.: (1977) 67 2728–2739.Google Scholar
  90. 90.
    Mehler, E.L., Self-consistent, nonorthogonal group function approximation for polyatomic systems. II. Analysis of noncovalent interactions. J.Chem.Phys.: (1981) 74 6298–6306.Google Scholar
  91. 91.
    Mehler, E.L., Self-consistent, nonorthogonal group function approximation: An ab initio approach for modelling interacting fragments and environmental effects. J. Mathematical Chemistry: (1992) 10 57–91.Google Scholar
  92. 92.
    Stone, A. J., The Theory of Intermolecular forces. 1996, Oxford: Clarendon.Google Scholar
  93. 93.
    Kutzelnigg, W., Stationary perturbation theory. Theor. Chim. Acta: (1992) 83 263–312.Google Scholar
  94. 94.
    Buckingham, A.D., Basic theory of intermolecular forces: applications to small molecules, in Intermolecular Interactions: From Diatomics to Biopolymers, B. Pullman, Editor. 1978, John Wiley & Sons: Chichester. p. 1–67.Google Scholar
  95. 95.
    Avoird, A. van der, Wormer P.E.S., Mulder F. and Berns R.M., Ab initio studies of the interactions in van der Waals molecules, in Topics in Current Chemistry, F.L. Boschke, Editor. 1980, Springer Verlag: Berlin. p. 1–51.Google Scholar
  96. 96.
    Margenau, M. and Kestner N. R., Theory of Intermolecular forces. 1969, Oxford: Pergamon.Google Scholar
  97. 97.
    Unsöld, A., Quantentheorie des Wasserstoffmolekülions und der Born-Landéschen Abstoßungskräfte. Z.Phys.: (1927) 43 563–574.Google Scholar
  98. 98.
    London, F., Theory and systematics of molecular forces. Z.Phys.: (1930) 63 245–279.Google Scholar
  99. 99.
    Casimir, H.B.G. and Polder D., The Influence of Retardation on the London-van der Waals Forces. Phys. Rev.: (1948) 73 360–372.Google Scholar
  100. 100.
    Claverie, P., Elaboration of approximate formulas for the interaction between large molecules: application in organic chemistry, in Intermolecular Interactions: From Diatomics to Biopolymers, B. Pullman, Editor. 1978, John Wiley & Sons: Chichester. p. 69–305.Google Scholar
  101. 101.
    Boys, S.F. and Bernardi F., The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys.: (1970) 19 553–566.Google Scholar
  102. 102.
    Duijneveldt, F.B. van, Rijdt J.G.C.M. van Duijneveldt-van de and Lenthe J.H. van, State of the art in counterpoise theory. Chem. Rev.: (1994) 94 1873–1885.Google Scholar
  103. 103.
    Thole, B.T. and Duijnen P.Th. van, A general population analysis preserving the dipole moment. Theor. Chim. Acta: (1983) 63 209–221.Google Scholar
  104. 104.
    Mulliken, R.S., Electronic population analysis on LCAO–MO molecular wave functions II. Overlap populations, bond orders, and covalent bond energies. J.Chem.Phys.: (1955) 23 1841–1846.Google Scholar
  105. 105.
    Jensen, F., Introduction to Computational Chemistry. 1999, Chichester, UK: Wiley.Google Scholar
  106. 106.
    Wiberg, K.B. and Rablen P.R., Comparison of atomic charges derived via different procedures. J.Comput.Chem.: (1993) 14 1504–1518.Google Scholar
  107. 107.
    Sigfridsson, E. and Ryde U., Comparison of methods for deriving atomic charges from the electrostatic potential and moments. J.Comput.Chem.: (1998) 19 377–395.Google Scholar
  108. 108.
    Jensen, L., Swart M., Duijnen P.Th. van and Snijders J.G., Medium perturbations on the molecular polarizability calculated with a localized dipole interaction model. J.Chem.Phys.: (2002) 117 3316–3320.Google Scholar
  109. 109.
    Augspurger, J.D. and Dykstra C.E., Evolution of polarizabilities and hyperpolarizabilities with molecular aggregation: A model study of acetylene clusters. Int.J. Quantum Chem.: (1992) 43 135–146.Google Scholar
  110. 110.
    Duijnen, P.Th. van, Swart M. and Grozema F., QM/MM calculation of (hyper)polarizabilities with the DRF approach., in Hybrid Quantum Mechanical and Molecular Mechanics Methods, J.Gao and M.A. Thompson, Editors. 1999, ACS Books: Washington, DC. p. 220–232.Google Scholar
  111. 111.
    Kirtman, B., Dykstra C.E. and Champagne B., Major intermolecular effects on nonlinear electrical response in a hexatriene model of solid state polyacetylene. Chem.Phys.Lett.: (1999) 305 132–138.Google Scholar
  112. 112.
    Fraga, S., Saxena K.M.S. and Karwowski J., Handbook of Atomic Data. Physical Sciences Data 5. 1976, Amsterdam: Elsevier.Google Scholar
  113. 113.
    Böttcher, C.J.F. and Bordewijk P., Theory of electric polarization. 2nd ed. Vol. II. 1978, Amsterdam: Elsevier.Google Scholar
  114. 114.
    Sadlej, A.J., Medium-size polarized basis-sets for high-level-correlated calculations of molecular electric properties. 4. Third row atoms - Ge through Br. Theor. Chim. Acta: (1991) 81 45–63.Google Scholar
  115. 115.
    Sadlej, A.J., Medium-size polarized basis-sets for high-level-correlated calculations of molecular electric properties. 5. Fourth row atoms - Sn through I. Theor. Chim. Acta: (1991) 81 339–354.Google Scholar
  116. 116.
    Werner, H-H. and W.Meyer, Static dipole polarizabilities of small molecules. Mol. Phys.: (1976) 31 855–872.Google Scholar
  117. 117.
    Gisbergen, S.J.A. van, Osinga V.P., Gritsenko O.V., Leeuwen R. van, Snijders J.G. and Baerends E.J., Improved density functional theory results for frequency-dependent polarizabilities, by the use of an exchange-correlation potential with correct asymptotic behavior. J.Chem.Phys.: (1996) 105 3142–3161.Google Scholar
  118. 118.
    Champagne, B., Perpète E.A., Gisbergen S.J. A. van, Baerends E.J., Snijders J.G., Soubra-Ghaoui C., Robins K.A. and Kirtman B., Assessment of conventional density functional schemes for computing the polarizabilities and hyperpolarizabilities of conjugated oligomers: An ab initio investigation of polyacetylene chains. J.Chem.Phys.: (1998) 109 0489–10498.Google Scholar
  119. 119.
    Gisbergen, S.J.A. van, Schipper P.R.T., Gritsenko O.V., Baerends E.J., Snijders J.G., Champagne B. and Kirtman B., Electric Field Dependence of the Exchange-Correlation Potential in Molecular Chains. Phys. Rev. Lett.: (1999) 83 694–697.Google Scholar
  120. 120.
    Gritsenko, O. and Baerends E.Jan., Asymptotic correction of the exchange – correlation kernel of time-dependent density functional theory for long-range charge-transfer excitations. J.Chem.Phys.: (2004) 121 655–660.Google Scholar
  121. 121.
    Neugebauer, J., Gritsenko O. and Baerends E.J., Assessment of a simple correction for the long-range charge-transfer problem in time-dependent density-functional theory. J.Chem.Phys.: (2006) 124 214102.Google Scholar
  122. 122.
    Paricaud, P., Predota M., Chialvo A.A. and Cummings P.T., From dimer to condensed phases at extreme conditions: Accurate predictions of the properties of water by a Gaussian charge polarizable model. J. Chem. Phys.: (2005) 122 244511.Google Scholar
  123. 123.
    Jackson, J.D., Classical Electrodynamics. 1975, New York: John Wiley & Sons.Google Scholar
  124. 124.
    Juffer, A.H., Botta E.F.F., Keulen B.A.M. van, Ploeg A. van der and Berendsen H.J.C., The electric potential of a macromolecule in a solvent: a fundamental approach. J.Comput.Phys.: (1991) 97 144–171.Google Scholar
  125. 125.
    Eichinger, M., Tavan P., Hutter J. and Parrinello M., A hybrid method for solutes in complex solvents: Density functional theory combined with empirical force fields. J. Chem. Phys.: (1999) 110 10452–10467.Google Scholar
  126. 126.
    Takahashi, H., Hori T., Hashimoto H. and Nitta T., A hybrid QM/MM method employing real space grids for QM water in the TIP4P water solvents. J.Comput.Chem.: (2001) 22 1252–1261.Google Scholar
  127. 127.
    Müller, W., Flesch J. and Meyer W., Treatment of intershell correlation effects in ab intio calculations by use of core potentals. Method and application to alkali and earth atoms. J. Chem. Phys.: (1984) 80 3297–3310.Google Scholar
  128. 128.
    Frecer, V. and Miertus S., Polarizable continuum model of solvation for biopolymers. Int. J.Quant. Chem.: (1992) 42 1449–1468.Google Scholar
  129. 129.
    Willetts, A., Rice J.E., Burland D.M. and Shelton D.P., Problems in the comparison of theoretical and experimental hyperpolarizabilities. J. Chem Phys.: (1992) 97 7590–7599.Google Scholar
  130. 130.
    Shelton, D.P. and Rice J.E., Measurements and Calculations of the Hyperpolarkabilities of Atoms and Small Molecules in the Gas Phase. Chem. Rev.: (1994) 94 3–29.Google Scholar
  131. 131.
    Wortmann, R. and Bishop D.M., Effective polarizabilities and local field corrections for nonlinear optical experiments in condensed media. J.Chem.Phys.: (1998) 108 1001–1007.Google Scholar
  132. 132.
    Lorentz, H.A., The Theory of Electrons. 1st. ed. 1909, Leizig: B.G. Teubner.Google Scholar
  133. 133.
    Boyd, R.W., Nonlinear Optics. 1992, San Diego: Academic Press.Google Scholar
  134. 134.
    Prasad, P.N. and Williams D.J., Introduction to Nonlinear Optical Effeects in Molecules and Polymers. 1991, New York: Wiley.Google Scholar
  135. 135.
    Butcher, P..N and Cotter D, The Elements of Nonlinear Optics. 1st ed. 1990, Cambridge: Cambridge University Press.Google Scholar
  136. 136.
    Jensen, L. and Duijnen P. Th. van, The Discrete Solvent Reaction Field model: A Quantum mechanics/Molecular mechanics model for calculating nonlinear optical properties of molecules in the condensed phase., in Atoms, molecules and clusters in electric fields. Theoretical approaches to the calculation of electric polarizability, G. Maroulis, Editor. 2006, Imperial College Press: London. p. 1–43.Google Scholar
  137. 137.
    Duijnen, P.Th. van and Rullmann J.A.C., Intermolecular interactions with the direct reaction field method. Int. J. Quantum Chem.: (1990) 38 181–189.Google Scholar
  138. 138.
    Dunning, T.H. and Hay P.J., Gaussian basis sets for molecular calculations, in Methods in Electronic Structure Theory, H.F. Schaefer III, Editor. 1977, Plenum: New York. p. 1–27.Google Scholar
  139. 139.
    Soper, A.K., The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa. Chem. Phys.: (2000) 258 121–137.Google Scholar
  140. 140.
    Neusser, H.J. and Krause H., Binding Energy and Structure of van der Waals Complexes of Benzene. Chem. Rev.: (1994) 94 1829–1843.Google Scholar
  141. 141.
    Sinnokrot, M.O. and Sherrill C.D., Highly Accurate Coupled Cluster Potential Energy Curves for the Benzene Dimer: Sandwich, T-Shaped, and Parallel-Displaced Configurations. J. Phys. Chem. A: (2004) 108 10200–10207.Google Scholar
  142. 142.
    Swart, M., Wijs T. van der, Guerra C.Fonseca and Bickelhaupt F. M., π-π stacking tackled with density functional theory. J. Molec. Model.: (2007) in press.Google Scholar
  143. 143.
    Battaglia, M.R., Buckingham A.D. and Williams J.H., The electric quadrupole moments of benzene and hexafluorobenzene. Chem. Phys. Lett.: (1981) 78 421–423.Google Scholar
  144. 144.
    Arunan, E. and Gutowsky H.S., The rotational spectrum, structure and dynamics of a benzene dimer. J.Chem.Phys.: (1993) 98 4294–4296.Google Scholar
  145. 145.
    Kolos, W. and Roothaan C.C J., Accurate Electronic Wave Functions for the H2 Molecule. Rev. Mod. Phys.: (1960) 32, 219–232.Google Scholar
  146. 146.
    Chalasinski, G., Szczesniak M.M., Cieplak P. and Scheiner S., Ab initio study of intermolecular potential of Hz0 trimer. J. Chem. Phys.: (1991) 94 2873–2882.Google Scholar
  147. 147.
    Dunning, T.H., Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neoen and hydrogen. (1989) 90 1007–1023.Google Scholar
  148. 148.
    Schuddeboom, W., Jonker S.A., Warman J.M., Haas M.P. de, Vermeulen M.J.W., Jager W.F., Lange B. de, Feringa B.L. and Fessendens R.W., Sudden Polarization in the Twisted, Phantom State of Tetraphenylethylene Detected by Time-Resolved Microwave Conductivity. J. Am. Chem. SOC: (1993) 115 3286–3290.Google Scholar
  149. 149.
    Schilling, C.L. and Hilinski* E.F., Dependence of the Lifetime of the Twisted Excited Singlet State of Tetraphenylethylene on Solvent Polarity. J. Am .Chem.SOc.: (1988) 110 2296–2298.Google Scholar
  150. 150.
    Ma, J. and Zimmt M.B., Equilibration between the fluorescent and zwitterionic phantom states in alkyl-substituted tetraphenylethylenes. J. Am .Chem.SOc.: (1992) 114 9723–9724.Google Scholar
  151. 151.
    Zijlstra, R. W.J., Grozema F. C., Swart M., Feringa B. L. and Duijnen P. Th. van, Solvent Induced Charge Separation in the Excited States of Symmetrical Ethylene: A Direct Reaction Field Study. J.Phys.Chem.A: (2001) 105 3583–3590.Google Scholar
  152. 152.
    Zijlstra, R.W.J., Duijnen P.Th. van, Feringa B.L., Steffen T., Duppen K. and Wiersma D.A., Excited state dynamics of tetraphenylethene: ultrafast Stoke shift, isomerization and charge separation. J.Phys.Chem.A: (1997) 101 9828–9836.Google Scholar
  153. 153.
    Grozema, F.C., M.Swart, Zijlstra R.J.W., Piet J.J., Siebbeles L.D.A. and Duijnen P. Th. van, QM/MM study of the role of the solvent in the formation of the charge separated excited state in 9,9'-bianthryl. J. Am .Chem.SOc.: (2005) 127 11019–11028.Google Scholar
  154. 154.
    Vries, A.H. de and Duijnen P.Th. van, Solvatochroism of the π*¨n transition of acetone by combined quantum mechanical–classical mechanical calculations. Int. J. Quantum Chem.: (1996) 57 1067–1076.Google Scholar
  155. 155.
    Duijnen, P.Th. van and Netzel T.L., Explicit Solvent DRF INDOs/CIS Computations of Charge Transfer State Energetics in a Pyrenyldeoxyuridine Nucleoside Model. J.Phys. Chem. A: (2006) 110 2204–2213.Google Scholar
  156. 156.
    Mitchell, C.D. and Netzel T.L., CIS INDO/S SCRF study of electron transfer excige states in a 1-pyrenyl substituted 1-methyluracil-5-carboxamide nucleoside: dielctric continuum solvation effects on electron transger states. J.Phys.Chem. B: (2000) 104 125–136.Google Scholar
  157. 157.
    Duijnen, P.Th. van, ZINDO/DRF, in ZINDO, A General Semi-empirical Program Package, M.C. Zerner, Editor. 1998, Quantum Theory Project, University of Florida: Gainesville (Fl.) USA. p. unpublished.Google Scholar
  158. 158.
    Duijnen, P.Th. van, ZINDO/DRF_RUMER_CI, in ZINDO, A General Semi-empirical Program Package, M.C. Zerner, Editor. 2003, Quantum Theory Project, University of Florida: GainesGainesville (Fl.) USAville. p. unpublished.Google Scholar
  159. 159.
    Manne, R. and Zerner M.C., Matrix elements of spin-dependent one-electron operators between bonded functions. Int. J. Quantum Chem.Quantum Chemistry Symposium: (1986) 19 165–172.Google Scholar
  160. 160.
    Duijnen, P.Th. van, Greene S.N. and Richards N.G.J., Time dependent density functional theory/discrete reaction field spectra of open-shell systems: the visual spectrum of [Fe III (PyPepS) 2 ] in aqueous solution. J.Chem.Phys.: (2007) 127 045105.Google Scholar
  161. 161.
    Hirata, S. and Head-Gordon M., Time-dependent density functional theory within the Tamm– Dancoff approximation. Chem.Phys.Lett.: (1999) 314 291–299.Google Scholar
  162. 162.
    Rinkevicius, Z., Tunell I., Salek P., Vahtras O. and Ågren H., Restricted DFT theory of linear time-depnendent properties in open- shell molecules. J. Chem. Phys.: (2003) 119 34–46.Google Scholar
  163. 163.
    Wang, F. and Ziegler T., Excitation energies of some d1 systems calculated using time-dependent density functional theory: an implementation of open-shell TDDFT theory for doublet–doublet excitations. Mol.Phys: (2004) 102 2585 – 2595.Google Scholar
  164. 164.
    Jensen, L., M.Swart, Duijnen P.Th. van and Autschbach J., The circular dichroism spectrum of [Co(en)3] 3+ in water. Int. J. Quantum Chem.: (2006) 106 2479–2488.Google Scholar
  165. 165.
    Cammi, R., Cossi M. and Tomasi J., Analytical derivatives for molecular solutes. III. Hartree – Fock static polarizability and hyperpolarizabilities in the polarizable continuum model. J. Chem Phys.: (1996) 104 4611–4620.Google Scholar
  166. 166.
    Luo, Y., Norman P. and Ågren H., A semiclassical approximation model for properties of molecules in solution. J. Chem. Phys.: (1998) 109 3589–3595.Google Scholar
  167. 167.
    Dehu, C., Geskin V., Persoons A. and Brédas J.-L., Effect of medium polarity on the secnd order polarizabiity of an ocupolar chromophore: an ab initio reation field study.. Eur. J. Org. Chem.: (1998) 1267–1269.Google Scholar
  168. 168.
    Morita, A. and Kato S., An ab initio analysis of medium perturbation on molecular polarizabilities. J.Chem.Phys.: (1999) 110 11987–11998.Google Scholar
  169. 169.
    Jensen, L. and Duijnen P.Th. van, The first hyperpolarizability of p-nitroaniline in 1,4-dioxane: A quantum mechanical/molecular mechanics study. J. Chem. Phys.: (2005) 213 074307.Google Scholar
  170. 170.
    Mikkelsen, K.V., Luo Y., H.Ågren and Jørgensen P., Sign change of hyerpolarizablities of solvated water. J. Chem Phys.: (1995) 102 9362–9367.Google Scholar
  171. 171.
    Kaatz, P. and Shelton D.P., Polarized hyper-Rayleigh light scattering measurements of nonlinear optical chromophores. J. Am .Chem.SOc.: (1996) 105 3918–3929.Google Scholar
  172. 172.
    Shoji, I., Kondo T. A. and Ito R., Second-order nonlinear susceptibilities of various dielectric and semiconductor materials. Opt.Quantum Electr.: (2002) 34 797–833.Google Scholar
  173. 173.
    Stähelin, M., Burland D.M. and Rice J.E., Solvent dependence of the second order hyperpolarizability in p-nitroaniline. Chem. Phys. Lett.: (1992) 191 245–250.Google Scholar
  174. 174.
    Connolly, M.L., Solvent-accessible surface of proteins and nucleic acids. Science: (1983) 221 709–713.Google Scholar
  175. 175.
    Pierotti, R.A., A scaled particle theory of aqueous and nonaqueous solutions. Chem. Rev.: (1976) 76 717–726.Google Scholar
  176. 176.
    Winstein, S. and Fainberg A.H., Correlation of Solvolysis Rates. 1 V.l Solvent Effects on Enthalpy and Entropy of Activation for Solvolysis of &Butyl Chloride2. J. Am .Chem.Soc.: (1957) 79 5937–5950.Google Scholar
  177. 177.
    Winstein, S., Clippinger E., Fainberg A.H. and Robinson G.C., Salt effexts of ion-pairs in solvolysis. J.Am.Chem.Soc.: (1954) 76 2597.Google Scholar
  178. 178.
    Remko, M., Duijnen P.Th. van and Lieth C-W. von der, Structure and stability of Li (I) and Na(I) - carboxylate, sulfate and phosphate complexes. J.Mol.Struct. (THEOCHEM): (2007) 814 119–125.Google Scholar
  179. 179.
    Remko, M., Duijnen P.Th. van and Swart M., Theoretical study of molecular structure, tautomerism, and geometrical isomerism of N-methyl and N-phenyl substituted cyclic imidazolines, oxazolines and thiazolines. Struct.Chem.: (2003) 14 271–278.Google Scholar
  180. 180.
    Calvert, J. G. and Pitts J. N., Photochemistry. 1966, New York: Wiley. 377.Google Scholar
  181. 181.
    Hayes, W.P. and Timmons C.J., Solvent and substituent effects on the nÆπ* absorption bands of some ketones. Spectrochim. Acta: (1965) 21 529–541.Google Scholar
  182. 182.
    Bayliss, N.S. and Wills-Johnson G., Solvent effects on the intensities and weak ultraviolet spectra of ketones and nitroparaffins - I. Spectrochim. Acta: (1968) 24A 551–661.Google Scholar
  183. 183.
    Kajzar, F. and J.Messier, Third-harmonic generation in liquids. Phys. Rev. A: (1985) 32 2352–2363.Google Scholar
  184. 184.
    Levine, B. F. and Bethea C. G., Effects on hyperpolarizabilities of molecular interactions in associating liquid mixtures. J. Chem. Phys.: (1976.) 65 2429–2438.Google Scholar
  185. 185.
    Thormahlen, I., Straub J. and Grigul. U., Refractive Index of Water and Its Dependence on Wavelength, Temperature, and Density. J. Phys. Chem. Ref. Data: (1985) 14 933–945.Google Scholar
  186. 186.
    Teng, C.C. and Garito A.F., Dispersion of the nonlinear second-order optical susceptibility of organic systems. Phys. Rev. B: (1983) 28 6766–6773.Google Scholar
  187. 187.
    Grozema, F.C. and Duijnen P.Th. van, Solvent effects on the π*♦n transition in various solvents. J.Phys.Chem.A: (1998) 102 7984–7989.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Piet Th. Van Duijnen
    • 1
  • Marcel Swart
    • 2
  • Lasse Jensen
    • 3
  1. 1.Zernike Institute for Advanced MaterialsRijksuniversiteit GroningenThe Netherlands
  2. 2.Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 BarcelonaSpain and Institut de Química Computacional, Universitat de GironaCampus MontiliviSpain
  3. 3.Department of ChemistryThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations