Global diversity of amphipods (Amphipoda; Crustacea) in freshwater

  • R. VäinöläEmail author
  • J. D. S. Witt
  • M. Grabowski
  • J. H. Bradbury
  • K. Jazdzewski
  • B. Sket
Part of the Developments in Hydrobiology book series (DIHY, volume 198)


Amphipods are brooding peracaridan crustaceans whose young undergo direct development, with no independent larval dispersal stage. Most species are epibenthic, benthic, or subterranean. There are some 1,870 amphipod species and subspecies recognized from fresh or inland waters worldwide at the end of 2005. This accounts for 20% of the total known amphipod diversity. The actual diversity may still be several-fold. Amphipods are most abundant in cool and temperate environments; they are particularly diversified in subterranean environments and in running waters (fragmented habitats), and in temperate ancient lakes, but are notably rare in the tropics. Of the described freshwater taxa 70% are Palearctic, 13% Nearctic, 7% Neotropical, 6% Australasian and 3% Afrotropical. Approximately 45% of the taxa are subterranean; subterranean diversity is highest in the karst landscapes of Central and Southern Europe (e.g., Niphargidae), North America (Crangonyctidae), and Australia (Paramelitidae). The majority of Palearctic epigean amphipods are in the superfamily Gammaroidea, whereas talitroid amphipods (Hyalella) account for all Neotropic and much of the Nearctic epigean fauna. Major concentrations of endemic species diversity occur in Southern Europe, Lake Baikal, the Ponto-Caspian basin, Southern Australia (including Tasmania), and the south-eastern USA. Endemic family diversity is similarly centered in the Western Palearctic and Lake Baikal. Freshwater amphipods are greatly polyphyletic, continental invasions have taken place repeatedly in different time frames and regions of the world. In the recent decades, human mediated invasions of Ponto-Caspian amphipods have had great impacts on European fluvial ecosystems.


Biogeography Continental invasions Endemism Gammaridea Malacostraca Species diversity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banarescu, P., 1990–1995. Zoogeography of Fresh Waters, Vol. I–III. Aula-Verlag, Wiesbaden.Google Scholar
  2. Barnard, J. L. & C. M. Barnard, 1983. Freshwater Amphipoda of the World. Part I, Evolutionary Patterns: i–xvii, 1–358. Part II, Handbook and Bibliography: xix, 359–830. Hayfield Associates, Mt. Vernon, Virginia.Google Scholar
  3. Barnard, J. L. & G. S. Karaman, 1991. The families and genera of marine gammaridean Amphipoda (except marine gammaroids). Records of the Australian Museum Suppl. 13(1): 1–417.Google Scholar
  4. Bij de Vaate, A., K. Jazdzewski, H. A. M. Ketelaars, S. Gollasch & G. Van der Velde, 2002. Geographical patterns in range extension of Ponto-Caspian macroinvertebrate species in Europe. Canadian Journal of Fisheries & Aquatic Sciences 59: 1159–1174.CrossRefGoogle Scholar
  5. Botosaneanu L. (ed.), 1986. Stygofauna Mundi: A Faunistic, Distributional, and Ecological Synthesis of the World Fauna Inhabiting Subterranean Waters (Including the Marine Interstitial). Brill/Backhuys, Leiden.Google Scholar
  6. Bousfield, E. L., 1983. An updated phyletic classification and palaeohistory of the Amphipoda. In Schram, F. R. (ed.), Crustacean Phylogeny. Crustacean Issues 1: 257–277.Google Scholar
  7. Bousfield, E. L. & C. T. Shih, 1994. The phyletic classification of amphipod crustaceans: problems in resolution. Amphipacifica 1(3), 76–134.Google Scholar
  8. Dejoux, C., 1994. Lake Titicaca. Archiv für Hydrobiologie, Ergebnisse der Limnologie 44: 35–42.Google Scholar
  9. Dumont, H. J., 1998. The Caspian Lake: history, biota, structure, and function. Limnology and Oceanography 43: 44–52.Google Scholar
  10. Englisch, U., C. O. Coleman & J. W. Wägele, 2003. First observations on the phylogeny of the families Gammaridae, Crangonyctidae, Melitidae, Niphargidae, Megaluropidae and Oedicerotidae (Amphipoda, Crustacea), using small subunit rDNA gene sequences. Journal of Natural History 37: 2461–2486.CrossRefGoogle Scholar
  11. Fenwick, G. D., 2001. The freshwater Amphipoda (Crustacea) of New Zealand: a review. Journal of the Royal Society of New Zealand 31: 341–363.Google Scholar
  12. Fišer, C., B. Sket & P. Trontelj, 2005. Niphargus homepage. URL Scholar
  13. Griffiths, C. I. & B. A. Stewart, 2001: Amphipoda. In Day, J. A., B. A. Stewart, I. J. deMoor & A. E. Louw (eds), Guides to the Freshwater Invertebrates of Southern Africa, Vol. 4: Crustacea III, Bathynellacea, Amphipoda, Isopoda, Spelaeogriphacea, Tanaidacea, Decapoda. WRC Report No TT 141/01. Water Research Commission, Pretoria: 28–49.Google Scholar
  14. Holsinger, J. R., 1993. Biodiversity of subterranean amphipod crustaceans: global patterns and zoogeographic implications. Journal of Natural History 27: 821–835.CrossRefGoogle Scholar
  15. Holsinger, J. R., 1994. Pattern and process in the biogeography of subterranean amphipods. Hydrobiologia 287, 131–145.CrossRefGoogle Scholar
  16. Jazdzewski, K., 1980. Range extensions of some gammaridean species in European inland waters caused by human activity. Crustaceana (Suppl) 6: 84–107.Google Scholar
  17. Kamaltynov, R. M. 2002 (dated 2001), Amfipody (Amphipoda: Gammaroidea). In Timoshkin, O. A. (ed.), Annotirovannyi Spisok Fauny Ozera Baikal i ego Vodosbornogo Basseina, Vol. I (I). Ozero Baikal (Index to the animal species inhabiting Lake Baikal and its catchment area, Vol. I(I). Lake Baikal). Nauka, Novosibirsk: 572–831.Google Scholar
  18. Koenemann, S. & J. R. Holsinger, 1999. Phylogenetic analysis of the amphipod family Bogidiellidae s. lat., and revision of taxa above the species level. Crustaceana 72: 781–816.CrossRefGoogle Scholar
  19. Kozhova, O. M. & L. R. Izmesteva (eds), 1998. Lake Baikal: Evolution and Biodiversity. Backhyus Publishers, Leiden.Google Scholar
  20. Lowry, J. K. & H. E. Stoddart, 2003. Crustacea: Malacostraca: Peracarida: Ampihpoda, Cumacea, Mysidacea. In Beesley, P. L. & W. W. K. Houston (eds), Zoological Catalogue of Australia, Vol 19.2B. CSIRO Publishing, Melbourne, Australia, xii+531 pp.Google Scholar
  21. Macdonald, K. S. III, L. Yampolsky & J. E. Duffy, 2005. Molecular and morphological evolution of the amphipod radiation of Lake Baikal. Molecular Phylogenetics and Evolution 35: 323–343.PubMedCrossRefGoogle Scholar
  22. Martin, J. W. & G. E. Davis, 2001. An Updated Classification of the Recent Crustacea. Natural History Museum of Los Angeles County, Science Series: Vol. 39, pp. vii-124.Google Scholar
  23. Myers, A. A. & J. K. Lowry, 2003. A phylogeny and a new classification of the Corophiidea Leach, 1814 (Amphipoda). Journal of Crustacean Biology 23: 443–485.CrossRefGoogle Scholar
  24. Panov, V. E. & N. A. Berezina, 2003. Invasion history, biology and impacts of the Baikalian amphipod Gmelinoides fasciatus. In Leppäkoski, E., S. Gollasch & S. Olenin (eds), Invasive Aquatic Species of Europe. Distribution, Impacts and Management. Kluwer, Dordrecht: 96–103.Google Scholar
  25. Sket, B., 1999. The nature of biodiversity in hypogean waters and how it is endangered. Biodiversity & Conservation 8: 1319–1338.CrossRefGoogle Scholar
  26. Takhteev, V. V., 2000. Trends in the evolution of Baikal amphipods and evolutionary parallels with some marine malacostracan faunas. Advances in Ecological Research 31: 196–220.Google Scholar
  27. Vader, W., 2005a. How Many Amphipod Species? Poster Presented at XII International Amphipod Colloquium. Cork, Ireland.Google Scholar
  28. Vader, W., 2005b. New amphipod species described in the period 1974–2004. Amphipod Newsletter 28 (URL http:// Scholar
  29. Väinölä, R. & R. M. Kamaltynov, 1999. Species diversity and speciation in the endemic amphipods of Lake Baikal: molecular evidence. Crustaceana 72: 945–956.CrossRefGoogle Scholar
  30. Vanderploeg, H. A., T. F. Nalepa, D. J. Jude, E. L. Mills, K. T. Holeck, J. R. Liebig, I. A. Grigorovich & H. Ojaveer, 2002. Dispersal and emerging ecological impacts of Ponto-Caspian species in the Laurentian Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences 59: 1209–1228.CrossRefGoogle Scholar
  31. Vonk, R. & F. R. Schram, 2003. Ingolfiellidea (Crustacea, Malacostraca, Amphipoda): a phylogenetic and biogeographic analysis. Contributions to Zoology 72: 39–72.Google Scholar
  32. Vonk, R. & F. R. Schram, 2005. World catalogue and bibliography of the Ingolfiellidea. URL Scholar
  33. Witt, J. D. S. & P. D. N. Hebert, 2000. Cryptic species diversity and evolution in the amphipod genus Hyalella in Central Glaciated North America: a molecular phylogenetic approach. Canadian Journal of Fisheries and Aquatic Sciences 57: 687–698.CrossRefGoogle Scholar
  34. Witt, J. D. S., D. L. Threloff & P. D. N. Hebert, 2006. DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation. Molecular Ecology 15: 3073–3082.PubMedCrossRefGoogle Scholar
  35. Zhang, J. & J. R. Holsinger, 2003. Systematics of the freshwater amphipod genus Crangonyx (Crangonyctidae) in North America. Virginia Museum of Natural History, Memoir 6, 274 pp.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • R. Väinölä
    • 1
    Email author
  • J. D. S. Witt
    • 2
  • M. Grabowski
    • 3
  • J. H. Bradbury
    • 4
  • K. Jazdzewski
    • 3
  • B. Sket
    • 5
  1. 1.Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
  2. 2.Department of BiologyUniversity of WaterlooWaterlooCanada
  3. 3.Department of Invertebrate Zoology and HydrobiologyUniversity of LodzLodzPoland
  4. 4.School of Earth and Environmental SciencesUniversity of AdelaideAdelaideAustralia
  5. 5.Department of Biology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations