Ecological Roles of Vegetative Terpene Volatiles

  • Jörg Degenhardt

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aharoni A, Giri AP, Deuerlein S, Griepink F, de Kogel WJ, Verstappen FWA, Verhoeven HA, Jongsma MA, Schwab W, Bouwmeester HJ (2003) Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15:866–2884CrossRefGoogle Scholar
  2. Al Abassi S, Birkett MA, Pettersson J, Pickett JA, Wadhams LJ, Woodcock CM (2000) Response of the seven-spot ladybird to an aphid alarm pheromone and an alarm pheromone inhibitor is mediated by paired olfactory cells. J Chem Ecol 26:1765–1771CrossRefGoogle Scholar
  3. Alborn HT, Turlings TCJ, Jones TH, Stenhagen G, Loughrin JH, Tumlinson JH (1997) An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945–949CrossRefGoogle Scholar
  4. Arimura G, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabayashi J (2000) Herbivory-induced volatiles elicit defence genes in lima bean. Nature 406:512–515PubMedCrossRefGoogle Scholar
  5. Arimura G, Ozawa R, Nishioka T, Boland W, Koch T, Kuhnemann F, Takabayashi J (2001) Herbivore-induced volatiles induce the emission of ethylene in neighboring lima bean plants. Plant J 29:87–98CrossRefGoogle Scholar
  6. Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA (2006) Volatile signaling in plant–plant interactions: ‘talking trees’ in the genomics era. Science 311:812–815PubMedCrossRefGoogle Scholar
  7. Bate NJ, Rothstein SJ (1998) C6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes. Plant J 16:561–569PubMedCrossRefGoogle Scholar
  8. Beale MH, Birkett MA, Bruce TJA, Chamberlain K, Field LM, Huttly AK, Martin JL, Parker R, Phillips AL, Pickett JA, Prosser IM, Shewry PR, Smart LE, Wadhams LJ, Woodcock CM, Zhang YH (2006) Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior. Proc Natl Acad Sci USA 103:10509–10513PubMedCrossRefGoogle Scholar
  9. Beauchamp J, Wisthaler A, Hansel A, Kleist E, Miebach M, Niinemets U, Schurr U, Wildt J (2005) Ozone induced emissions of biogenic VOC from tobacco: relationships between ozone uptake and emission of LOX products. Plant Cell Environ 28:1334–1343CrossRefGoogle Scholar
  10. Boff MIC, Zoon FC, Smits PH (2001) Orientation of Heterorhabditis megidis to insect hosts and plant roots in a Y-tube sand olfactometer. Entomol Exp Appl 98:329–337CrossRefGoogle Scholar
  11. Bruin J, Dicke M, Sabelis MW (1992) Plants are better protected against spider-mites afterexposure to volatiles from infested conspecifics. Experientia 48:525–529CrossRefGoogle Scholar
  12. Carroll MJ, Schmelz EA, Meagher RL, Teal PEA (2006) Attraction of Spodoptera frugiperda larvae to volatiles from herbivore-damaged maize seedlings. J Chem Ecol 32:1911–1924PubMedCrossRefGoogle Scholar
  13. Chen F, Ro DK, Petri J, Gershenzon J, Bohlmann J, Pichersky E, Tholl D (2004) Characterization of a root-specific Arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1,8-cineole. Plant Physiol 135:1956–1966PubMedCrossRefGoogle Scholar
  14. Coleman RA, Barker AM, Fenner M (1999) Parasitism of the herbivore Pieris brassicae L.(Lep., Pieridae) by Cotesia glomerata L. (Hym., Braconidae) does not benefit the host plant by reduction of herbivory. J Appl Entomol Z Ang Entomol 123:171–177Google Scholar
  15. Connolly JD, Hill RA (eds) (1991) Dictionary of terpenoids. Chapman and Hall, LondonGoogle Scholar
  16. D’Alessandro M, Turlings TCJ (2005) In situ modification of herbivore-induced plant odors: a novel approach to study the attractiveness of volatile organic compounds to parasitic wasps. Chem Senses 30:739–753PubMedCrossRefGoogle Scholar
  17. D’Alessandro M, Turlings TCJ (2006) Advances and challenges in the identification of volatiles that mediate interactions among plants and arthropods. Analyst 131:24–32PubMedCrossRefGoogle Scholar
  18. De Boer JG, Dicke M (2004) The role of methyl salicylate in prey searching behavior of the predatory mite Phytoseiulus persimilis. J Chem Ecol 30:255–271PubMedCrossRefGoogle Scholar
  19. De Boer JG, Dicke M (2006) Olfactory learning by predatory arthropods. Anim Biol 56:143–155CrossRefGoogle Scholar
  20. De Boer JG, Posthumus MA, Dicke M (2004) Identification of volatiles that are used in discrimination between plants infested with prey or nonprey herbivores by a predatory mite. J Chem Ecol 30:2215–2230PubMedCrossRefGoogle Scholar
  21. Degenhardt J, Gershenzon J, Baldwin IT, Kessler A (2003) Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies. Curr Opin Biotechnol 14:169–176PubMedCrossRefGoogle Scholar
  22. De Moraes CM, Lewis WJ, Pare PW, Alborn HT, Tumlinson JH (1999) Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573Google Scholar
  23. Dicke M (1999) Are herbivore-induced plant volatiles reliable indicators of herbivore identity to foraging carnivorous arthropods? Entomol Exp Appl 91:131–142CrossRefGoogle Scholar
  24. Dicke M, Van Beek TA, Posthumus MA, Ben Dom N, Van Bokhoven H, De Groot AE (1990) Isolation and identification of voatile dairomone that affects acarine predator–prey interactions. J Chem Ecol 16:381–396CrossRefGoogle Scholar
  25. Dicke M, van Loon JJA (2000) Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. Ent Exp Appl 97:237–249CrossRefGoogle Scholar
  26. Drukker B, Bruin J, Jacobs G, Kroon A, Sabelis MW (2000) How predatory mites learn to cope with variability in volatile plant signals in the environment of their herbivorous prey. Exp Appl Acarol 24:881–895PubMedCrossRefGoogle Scholar
  27. Du Y, Poppy GM, Powell W, Pickett JA, Wadhams LJ, Woodcock CM (1998) Identification of semiochemicals released during aphid feeding that attract parasitoid Aphidius ervi. J Chem Ecol 24:1355–1368CrossRefGoogle Scholar
  28. Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH (2004) Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci USA 101:1781–1785PubMedCrossRefGoogle Scholar
  29. Farag MA, Pare PW (2002) C6-Green leaf volatiles trigger local and systemic VOC emissions in tomato. Phytochemistry 61:545–554PubMedCrossRefGoogle Scholar
  30. Farag MS, Fokar M, Zhang HA, Allen RD, Pare PW (2005) (Z)-3-Hexenol induces defense genes and downstream metabolites in maize. Planta 220:900–909PubMedCrossRefGoogle Scholar
  31. Foster SP, Denholm I, Thompson R, Poppy GM, Powell W (2005) Reduced response of insecticide-resistant aphids and attraction of parasitoids to aphid alarm pheromone; a potential fitnesstrade-off. Bull Entomol Res 95:37–46PubMedCrossRefGoogle Scholar
  32. Gershenzon J, Kreis W (1999) Biosynthesis of monoterpenes, sesquiterpenes, diterpenes, sterols, cardiac glycosides and steroid saponins. In: Wink M (ed) Biochemistry of plant secondary metabolism, Ann Plant Rev, vol 2. Sheffield Academic Press, Sheffield,pp 222–299Google Scholar
  33. Gomez SK, Cox MM, Bede JC, Inoue K, Alborn HT, Tumlinson JH, Korth KL (2005) Lepidopteran herbivory and oral factors induce transcripts encoding novel terpene synthases in Medicago truncatula. Arch Insect Biochem Phys 58:114–127CrossRefGoogle Scholar
  34. Gouinguene SP, Turlings TCJ (2002) The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiol 129:1296–1307PubMedCrossRefGoogle Scholar
  35. Guenther AB, Zimmerman PR, Harley PC, Monson RK, Fall R (1993) Isoprene and monoterpene emission rate variability – model evaluations and sensitivity analyses. J Geophys Res 98:12609–12617CrossRefGoogle Scholar
  36. Halitschke R, Schittko U, Pohnert G, Boland W, Baldwin IT (2001) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, sphingidae) and its natural host Nicotiana attenuata III. Fatty acid–amino acid conjugates in herbivore oral secretions are necessary and sufficient for herbivore-specific plant responses. Plant Physiol 125:711–717PubMedCrossRefGoogle Scholar
  37. Hardie J, Pickett JA, Pow EM, Smiley DWM (1999) Aphids. In: Hardie J, Minks AK (eds) Pheromones of non-lepidopteran insects associated with agricultural plants. CAB International, Wallingford, pp 227–250Google Scholar
  38. Hilker M, Kobs C, Varama M, Schrank K (2002) Insect egg deposition induces Pinus sylvestris to attract egg parasitoids. J Exp Biol 205:455–461PubMedGoogle Scholar
  39. Hoballah MEF, Turlings TCJ (1999) Experimental evidence that plants under caterpillar attack may benefit from attracting parasitoids. Evol Ecol Res 3:553–565Google Scholar
  40. Hoballah ME, Turlings TCJ (2005) The role of fresh versus old leaf damage in the attraction of parasitic wasps to herbivore-induced maize volatiles. J Chem Ecol 31:2003–2018PubMedCrossRefGoogle Scholar
  41. Hoballah ME, Köllner TG, Degenhardt J, Turlings TCJ (2004) Costs of induced volatile production in maize. OIKOS 105:168–180CrossRefGoogle Scholar
  42. Howe GA (2004) Jasmonates as signals in the wound response. J Plant Growth Regul 33:223–237Google Scholar
  43. Jasoni R, Kane C, Green C, Peffley E, Tissue D, Thompson L, Payton P, Paré PW (2004) Altered leaf and root emissions from onion (Allium cepa L.) grown under elevated CO2 conditions. Environ Exp Bot 51:273–280CrossRefGoogle Scholar
  44. Johnson CB, Kirby J, Naxakis G, Pearson S (1999) Substantial UV-B-mediated induction of essential oils in sweet basil (Ocimum basilicum L.). Phytochemistry 51:507–510CrossRefGoogle Scholar
  45. Kappers IF, Aharoni A, van Herpen T, Luckerhoff LLP, Dicke M, Bouwmeester HJ (2005) Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science 309:2070–2072PubMedCrossRefGoogle Scholar
  46. Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 1291:2141–2144CrossRefGoogle Scholar
  47. Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328PubMedCrossRefGoogle Scholar
  48. Köllner TG, Schnee C, Gershenzon J, Degenhardt J (2004) The sesquiterpene hydrocarbons of maize (Zea mays) form five groups with distinct developmental and organ-specific distribution. Phytochemistry 65:1895–1902PubMedCrossRefGoogle Scholar
  49. Knudsen JT, Eriksson R, Gershenzon J, Stahl B (2006) Diversity and distribution of floral scent. Bot Rev 72:1–120CrossRefGoogle Scholar
  50. Kunert G, Otto S, Röse USR, Gershenzon J, Weisser WW (2005) Alarm pheromone mediates production of winged dispersal morphs in aphids. Ecol Lett 8:596–603CrossRefGoogle Scholar
  51. Mattiacci L, Dicke M, Posthumus MA (1995) Beta-glucosidase—an elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps. Proc Natl Acad Sci USA 92:2036–2040PubMedCrossRefGoogle Scholar
  52. Meiners T, Hilker M (2000) Induction of plant synomones by oviposition of a phytophagous insect. J Chem Ecol 26:221–232CrossRefGoogle Scholar
  53. Molck G, Micha SG, Wyss U (1999) Attraction to odour of infested plants and learning behaviour in the aphid parasitoid Aphelinus abdominalis. J Plant Dis Protect 106:557–567Google Scholar
  54. Mumm R, Schrank K, Wegener R, Schulz S, Hilker M (2003) Chemical analysis of volatiles emitted by Pinus sylvestris after induction by insect oviposition. J Chem Ecol 29:1235–1252PubMedCrossRefGoogle Scholar
  55. Mumm R, Hilker M (2005) The significance of background odour for an egg parasitoid to detect plants with host eggs. Chem Senses 30:337–343PubMedCrossRefGoogle Scholar
  56. Mithöfer A, Wanner G, Boland W (2005) Effects of feeding Spodoptera littoralis on lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission. Plant Physiol 137:1160–1168PubMedCrossRefGoogle Scholar
  57. Paré PW, Tumlinson JH (1997) De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Physiol 114:1161–1167PubMedGoogle Scholar
  58. Rasmann S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TCJ (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737PubMedCrossRefGoogle Scholar
  59. Runyon JB, Mescher MC, De Moraes CM (2006) Volatile chemical cues guide host location and host selection by parasitic plants. Science 313:1964–1967PubMedCrossRefGoogle Scholar
  60. Ruther J, Fürstenau B (2005) Emission of herbivore-induced volatiles in absence of a herbivore – response of Zea mays to green leaf volatiles and terpenoids. Z Naturforsch 60:743–756Google Scholar
  61. Ruther J, Kleier S (2005) Plant–plant signaling: ethylene synergizes volatile emission in Zea mays induced by exposure to (Z)-3-hexen-1-ol. J Chem Ecol 31:2217–2222PubMedCrossRefGoogle Scholar
  62. Schmelz EA, Alborn HT, Tumlinson JH (2001) The influence of intact-plant and excised-leaf bioassay designs on volicitin- and jasmonic acid-induced sesquiterpene volatile release inZea mays. Planta 214:171–179PubMedCrossRefGoogle Scholar
  63. Schmelz EA, Alborn HT, Banchio E, Tumlinson JH (2003) Quantitative relationships between induced jasmonic acid levels and volatile emission in Zea mays during Spodoptera exigua herbivory. Planta 216:665–673PubMedGoogle Scholar
  64. Schnee C, Köllner TG, Gershenzon J, Degenhardt J (2002) The maize gene terpene synthase 1 encodes a sesquiterpene synthase catalyzing the formation of (E)-farnesene, (E)-nerolidol, and (E,E)-farnesol after herbivore damage. Plant Physiol 130:2049–2060PubMedCrossRefGoogle Scholar
  65. Schnee C, Köllner TG, Held M, Turlings TCJ, Gershenzon J, Degenhardt J (2006) The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc Natl Acad Sci USA 103:1129–1134PubMedCrossRefGoogle Scholar
  66. Spiteller D, Boland W (2003) N-(17-acyloxy-acyl)-glutamines: novel surfactants from oral secretions of lepidopteran larvae. J Org Chem 68:8743–8749PubMedCrossRefGoogle Scholar
  67. Steele CL, Katoh S, Bohlmann J, Croteau R (1998) Regulation of oleoresinosis in grand fir(Abies grandis) – differential transcriptional control of monoterpene, sesquiterpene, and diterpene synthase genes in response to wounding. Plant Physiol 116:1497–1504PubMedCrossRefGoogle Scholar
  68. Takabayashi J, Dicke M, Posthumus MA (1994) Volatile herbivore-induced terpenoids in plant mite interactions – variation caused by biotic and abiotic factors. J Chem Ecol 20:1329–1354CrossRefGoogle Scholar
  69. Tholl D, Chen F, Petri J, Gershenzon J, Pichersky E (2005) Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. Plant J 42:757–771PubMedCrossRefGoogle Scholar
  70. Tumlinson JH, Lait CG (2005) Biosynthesis of fatty acid amide elicitors of plant volatiles by insect herbivores. Arch Insect Biochem Physiol 58:54–68PubMedCrossRefGoogle Scholar
  71. Turlings TCJ, Tumlinson JH, Lewis WJ (1990) Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253PubMedCrossRefGoogle Scholar
  72. Turlings TCJ, Tumlinson JH, Heath RR, Proveaux AT, Doolittle RE (1991) Isolation and identification of allelochemicals that attract the larval parasitoid, Cotesia marginiventris (Cresson), to the microhabitat of one of its hosts. J Chem Ecol 17:2235–2251CrossRefGoogle Scholar
  73. Turlings TCJ, Lengwiler UB, Bernasconi ML, Wechsler D (1998) Timing of induced volatile emissions in maize seedlings. Planta 207:146–152CrossRefGoogle Scholar
  74. Turlings TCJ, Wäckers FL (eds) (2004) Recruitment of Predators and parasitoids by Herbivore-damaged plants. Cambridge University Press, CambridgeGoogle Scholar
  75. Turlings TCJ, Ton J (2006) Exploiting scents of distress: the prospect of manipulating herbivore-induced plant odours to enhance the control of agricultural pests. Curr Opin Plant Biol9:421–427PubMedCrossRefGoogle Scholar
  76. Van Den Boom CEM, Van Beek TA, Posthumus MA, De Groot A, Dicke M (2004) Qualitative and quantitative variation among volatile profiles induced by Tetranychus urticae feeding on plants from various families. J Chem Ecol 30:69–89PubMedCrossRefGoogle Scholar
  77. van Loon JJA, De Boer JG, Dicke M (2000) Parasitoid-plant mutualism: parasitoid attack of herbivore increases plant reproduction. Entomol Exp Appl 97:219–227CrossRefGoogle Scholar
  78. van Tol RWHM, van der Sommen ATC, Boff MIC, van Bezooijen J, Sabelis MW, Smits PH (2001) Plants protect their roots by alerting the enemies of grubs. Ecol Lett 4:292–294CrossRefGoogle Scholar
  79. Vuorinen T, Nerg AM, Holopainen JK (2004a) Ozone exposure triggers the emission of herbivore-induced plant volatiles, but does not disturb tritrophic signalling. Environ Pollut 131:305–311CrossRefGoogle Scholar
  80. Vuorinen T, Reddy GVP, Nerg AM, Holopainen JK (2004b) Monoterpene and herbivore-induced emissions from cabbage plants grown at elevated atmospheric CO2 concentration. AtmosEnviron 38:675–682Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Jörg Degenhardt
    • 1
  1. 1.Department of BiochemistryMax Planck Institute for Chemical EcologyD-07745 JenaGermany

Personalised recommendations