Plant Lectins as Part of the Plant Defense System Against Insects

  • Els J.M. Van Damme


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrawal AA (2003) Mechanisms, ecological consequences and agricultural implications of tri-trophic interactions. Curr Opin Plant Biol 3:329–335CrossRefGoogle Scholar
  2. Bandyopadhyay S, Roy A, Das S (2001) Binding of garlic (Allium sativum) leaf lectin to the gut receptors of homopteran pests is correlated to its insecticidal activity. Plant Sci 161:1025–1033CrossRefGoogle Scholar
  3. Bano-Maqbool S, Riazuddin S, Loc NT, Gatehouse AMR., Gatehouse JA, Christou P (2001) Expression of multiple insecticidal genes confers broad resistance against a range of different rice pests. Mol Breed 7:85–93CrossRefGoogle Scholar
  4. Boulter D, Edwards GA, Gatehouse AMR, Gatehouse JA, Hilder VA (1990) Additive protective effects of different plant-derived insect resistance genes in transgenic tobacco plants. Crop Prot 9:351–354CrossRefGoogle Scholar
  5. Bourne Y, Astoul CH, Zamboni V, Peumans WJ, Menu-Bouaouiche L, Van Damme EJM, Barre A, Rougé P (2002) Structural basis for the unusual carbohydrate-binding specificity of jacalin towards galactose and mannose. Biochem J 364:173–180PubMedGoogle Scholar
  6. Carlini CR, Grossi-de-Sà MF (2002) Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides. Toxicon 40:1515–1539Google Scholar
  7. Chang T, Chen L, Chen S, Cai H, Liu X, Xiao G, Zhu Z (2003) Transformation of tobacco with genes encoding Helianthus tuberosus agglutinin (HTA) confers resistance to peach-potato aphid (Myzus persicae). Transgenic Res 12:607–614PubMedCrossRefGoogle Scholar
  8. Chen Y, Peumans WJ, Hause B, Bras J, Kumar M, Proost P, Barre A, Rougé P, Van Damme EJM (2002) Jasmonic acid methyl ester induces the synthesis of a cytoplasmic/nuclear chitooligosaccharide-binding lectin in tobacco leaves. FASEB J 16:905–907PubMedGoogle Scholar
  9. Christou P, Capell T, Kohli A, Gatehouse JA, Gatehouse AMR (2006) Recent developments and future prospects in insect pest control in transgenic crops. Trends Plant Sci 11:302–308PubMedCrossRefGoogle Scholar
  10. Claes B, Dekeyser R, Villarroel R, Van den Bulcke M, Bauw G, Van Montagu M, Caplan A (1990) Characterization of a rice gene showing organ-specific expression in response to salt stress and drought. Plant Cell 2:19–27PubMedCrossRefGoogle Scholar
  11. Cristofoletti PT, de Sousa FA, Rahbé Y, Terra WR (2006) Characterization of a membrane-bound aminopeptidase purified from Acyrthosiphon pisum midgut cells. A major binding site for toxic mannose lectins. FEBS J 273:5574–5588PubMedCrossRefGoogle Scholar
  12. Czapla TH (1997) Plant lectins as insect control proteins in transgenic plants. In: Carozzi N, Koziel M (eds) Advances in insect control: the role of transgenic plants. Taylor and Francis, London, pp 123–138Google Scholar
  13. Czapla TH, Lang BA (1990) Effect of plant lectins on the larval development of European corn borer (Lepidoptera: Pyralidae) and southern corn rootworm (Coleoptera: Chrysomelidae). J Econ Entomol 83:2480–2485Google Scholar
  14. Down RE, Fitches EC, Wiles DP, Corti P, Bell HA, Gatehouse JA, Edwards JP (2006) Insecticidal spider venom toxin fused to snowdrop lectin is toxic to the peach-potato aphid, Myzus persicae (Hemiptera: Aphididae) and the rice brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Pest Manag Sci 62:77–85PubMedCrossRefGoogle Scholar
  15. Down RE, Gatehouse AMR, Hamilton WD, Gatehouse JA (1996) Snowdrop lectin inhibits development and decreases fecundity of the glasshouse potato aphid (Aulacorthum solani) when administered in vitro and via transgenic plants both in laboratory and glasshouse trials. J Insect Physiol 42:1035–1045CrossRefGoogle Scholar
  16. Du J, Foissac X, Carss A, Gatehouse AMR, Gatehouse JA (2000) Ferritin acts as the most abundant binding protein for snowdrop lectin in the midgut of rice brown planthoppers (Nilaparvata lugens). Insect Biochem Mol Biol 30:297–305PubMedCrossRefGoogle Scholar
  17. Dutta I, Majumder P, Saha P, Sakar A, Ray K, Das S (2005a) Constitutive and phloem specific expression of Allium sativum leaf agglutinin (ASAL) to engineer aphid (Lipaphis erysimi) resistance in transgenic Indian mustard (Brassica juncea). Plant Sci 169:996–1007CrossRefGoogle Scholar
  18. Dutta I, Saha P, Majumder, P, Sakar A, Chakraborti D, Banerjee S, Das S (2005b) The efficacy of a novel insecticidal protein, Allium sativum leaf lectin (ASAL), against homopteran insects monitored in transgenic tobacco. Plant Biotechnol J 3:601–611CrossRefGoogle Scholar
  19. Eisemann CH, Donaldson RA, Pearson RD, Cadogan LC, Vuocolo T, Tellam RL (1994) Larvicidal activity of lectins on Lucilia cuprina – Mechanism of action. Entomol Exp Appl 72:1–10CrossRefGoogle Scholar
  20. Fitches E, Audsley N, Gatehouse JA, Edwards JP (2002) Fusion proteins containing neuropeptides as novel insect contol agents: snowdrop lectin delivers fused allatostatin to insect haemolymph following oral ingestion. Insect Biochem Mol Biol 32:1653–1661PubMedCrossRefGoogle Scholar
  21. Fitches E, Edwards MG, Mee C, Grishin E, Gatehouse AM, Edwards JP, Gatehouse JA (2004) Fusion proteins containing insect-specific toxins as pest control agents: snowdrop lectin delivers fused insecticidal spider venom toxin to insect haemolymph following oral ingestion. J Insect Physiol 50:61–71PubMedCrossRefGoogle Scholar
  22. Fitches E, Gatehouse JA (1998) A comparison of the short and long term effects of insecticidal lectins on the activities of soluble and brush border enzymes of tomato moth larvae (Lacanobia oleracea). J Insect Physiol 44:1213–1224PubMedCrossRefGoogle Scholar
  23. Fitches E, Woodhouse SD, Edwards JP, Gatehouse, J.A. (2001) In vitro and in vivo binding of snowdrop (Galanthus nivalis agglutinin; GNA) and jack bean (Canavalia ensiformis; ConA) lectins within tomato moth (Lacanobia oleracea) larvae: mechanisms of insecticidal action. J Insect Physiol 47:777–787PubMedCrossRefGoogle Scholar
  24. Gatehouse AMR, Davison GM, Stewart JN, Gatehouse LN, Kumar A, Geoghegan IE, Birch ANE, Gatehouse JA (1999) Concanavalin A inhibits development of tomato moth (Lacanobia oleracea) and peach-potato aphid (Myzus persicae) when expressed in transgenic potato plants. Mol Breed 5:153–165CrossRefGoogle Scholar
  25. Gatehouse AMR, Davison GM, Newell CA, Merryweather A, Hamilton WDO, Burgess EPJ, Gilbert RJC, Gatehouse JA (1997) Transgenic potato plants with enhanced resistance to the tomato moth, Lacanobia oleracea: growth room trials. Mol Breed 3:49–63CrossRefGoogle Scholar
  26. Gatehouse AMR, Howe DS, Flemming JE, Hilder VA, Gatehouse JA (1991) Biochemical basis of insect resistance in winged bean (Psophocarpus tetragonolobus) seeds. J Sci Food Agric 55:63–74CrossRefGoogle Scholar
  27. Gatehouse JA (2002) Plant resistance towards insect herbivores: a dynamic interaction. New Phytol 156:145–169CrossRefGoogle Scholar
  28. Gfeller A, Farmer EE (2004). Keeping the leaves green above us. Science 306:1515–1516PubMedCrossRefGoogle Scholar
  29. Giovanini MP, Saltmann KD, Puthoff DP, Gonzalo M, Ohm HW, Williams CE (2007) A novel wheat gene encoding a putative chitin-binding lectin is associated with resistance against Hessian fly. Mol Plant Pathol 8:69–82CrossRefGoogle Scholar
  30. Goldstein IJ, Poretz RD (1986) Isolation, physicochemical characterization, and carbohydrate-binding specificity of lectins. In: Liener IE, Sharon N, Goldstein IJ (eds) The lectins, properties, functions, and applications in biology and medicine. Academic Press, Orlando, USA, pp 33–247Google Scholar
  31. Guo HN, Jia YT, Zhou YG, Zhang ZS, Ouyang Q, Jiang Y, Tian YC (2004) Effects of transgenic tobacco plants expressing ACA gene from Amaranthus caudatus on the population development of Myzus persicae. Acta Bot Sin 46:1100–1105Google Scholar
  32. Gupta GP, Birah A, Rani S (2005) Effect of plant lectins on growth and development of American bollworm (Helicoverpa armigera). Indian J Agric Sci 75:207–212Google Scholar
  33. Habibi J, Backus EA, Czapla TH (1993) Plant lectins affect survival of the potato leafhopper (Homoptera: Cicadellidae). J Econ Entomol 86:945–951Google Scholar
  34. Halitschke R, Baldwin IT (2004) Jasmonates and related compounds in plant-insect interactions. J Plant Growth Regul 23:238–245Google Scholar
  35. Haq SK, Atif SM, Khan RH (2004) Protein proteinase inhibitor genes in combat against insects, pests, and pathogens: natural and engineered phytoprotection. Arch Biochem Biophys 431:145–159PubMedCrossRefGoogle Scholar
  36. Harper SM, Crenshaw RW, Mullins MA, Privalle LS (1995) Lectin binding to insect brush border membranes. J Econ Entomol 88:1197–1202Google Scholar
  37. Harper MS, Hopkins TL, Czapla TH (1998) Effect of wheat germ agglutinin on formation and structure of the peritrophic membrane in European corn borer (Ostrinia nubilalis) larvae. Tissue Cell 30:166–176CrossRefPubMedGoogle Scholar
  38. Hilder VA, Powell KS, Gatehouse AMR, Gatehouse JA, Gatehouse LN, Shi Y, Hamilton WDO, Merryweather A, Newell C, Timans JC, Peumans WJ, Van Damme EJM, Boulter D (1995) Expression of snowdrop lectin in transgenic tobacco plants results in added protection against aphids. Transgenic Res 4:18–25CrossRefGoogle Scholar
  39. Huesing JE, Murdock LL, Shade RE (1991) Effect of wheat germ isolectins on development of cowpea weevil. Phytochemistry 30:785–788CrossRefGoogle Scholar
  40. Ishimoto M, Kitamura K (1989) Growth inhibitory effects of an α-amylase inhibitor from kidney bean, Phaseolus vulgaris (L.) on three species of bruchids (Coleoptera: Bruchidae). Appl Ent Zool 24:281–286Google Scholar
  41. Ishimoto M, Sato T, Chrispeels MJ, Kitamura K (1996) Bruchid resistance of transgenic azuki bean expressing seed alpha-amylase inhibitor of common bean. Entomol Exp Appl 79:309–315CrossRefGoogle Scholar
  42. Kaku H, Van Damme EJM, Peumans WJ, Goldstein IJ (1990) Carbohydrate-binding specificity of the daffodil (Narcissus pseudonarcissus) and amaryllis (Hippeastrum hybr.) bulb lectins. Arch Biochem Biophys 279:298–304PubMedCrossRefGoogle Scholar
  43. Kaku H, Van Damme EJM, Peumans WJ, Goldstein IJ (1992) New mannose-specific lectins from garlic (Allium sativum) and ramsons (Allium ursinum) bulbs. Carbohydr Res 229:347–353PubMedCrossRefGoogle Scholar
  44. Kanrar S, Venkateswari J, Kirti PB, Chopra VL (2002) Transgenic Indian mustard (Brassica juncea) with resistance to the mustard aphid (Lipaphis erysimi Kalt.). Plant Cell Rep 20:976–981CrossRefGoogle Scholar
  45. Kaur M, Singh K, Rup PJ, Kamboj SS, Saxena AK, Sharma M, Bhagat M, Sood SK, Singh J (2006) A tuber lectin from Arisaema jacquemontii Blume with anti-insect and anti-proliferative properties. J Biochem Mol Biol 39:432–440PubMedGoogle Scholar
  46. Kessler A, Baldwin IT (2002). Plant responses to insect herbivory: the emerging molecular analysis. Ann Rev Plant Biol 53:299–328CrossRefGoogle Scholar
  47. Lannoo N, Peumans WJ, Van Pamel E, Alvarez R, Xiong TC, Hause G, Mazars C, Van Damme EJM (2006) Localization and in vitro binding studies suggest that the cytoplasmic/nuclear tobacco lectin can interact in situ with high-mannose and complex N-glycans. FEBS Lett 580:6329–6337PubMedCrossRefGoogle Scholar
  48. Larue-Achagiotis C, Picard M, Louis-Sylvestre J (1992) Feeding behavior in rats on a complete diet containing Concanavalin A. Reprod Nutr Dev 32:343–350PubMedCrossRefGoogle Scholar
  49. Lehane MJ (1997) Peritrophic membrane, structure and function. Ann Rev Entomol 42:525–550CrossRefGoogle Scholar
  50. Lord JM, Roberts LM, Robertus JD (1994) Ricin: structure, mode of action, and some current applications. FASEB J 8:201–208PubMedGoogle Scholar
  51. Macedo MLR, Damico DCS, Freire MD, Toyama MH, Marangoni S, Novello JC (2003) Purification and characterization of an N-acetylglucosamine-binding lectin from Koelreuteria paniculata seeds and its effect on the larval development of Callosobruchus maculatus (Coleoptera: Bruchidae) and Anagasta kuehniella (Lepidoptera: Pyralidae). J Agric Food Chem 51:2980–2986PubMedCrossRefGoogle Scholar
  52. Macedo ML, Freire MD, da Silva MB, Coelho LC (2006) Insecticidal action of Bauhinia monandra leaf lectin (BmoLL) against Anagasta kuehniella (Lepidoptera: Pyralidae), Zabrotes subfasciatus and Callosobruchus maculatus (Coleoptera: Bruchidae). Comp Biochem Physiol A Mol Integr Physiol 146:486–498PubMedCrossRefGoogle Scholar
  53. Majumder P, Banerjee S, Das S (2004) Identification of receptors responsible for binding of the mannose specific lectin to the gut epithelial membrane of the target insects. Glycoconj J 20:525–530PubMedCrossRefGoogle Scholar
  54. Majumder P, Mondal HA, Das S (2005) Insecticidal activity of Arum maculatum tuber lectin and its binding to the glycosylated insect gut receptors. J Agric Food Chem 53:6725–6729PubMedCrossRefGoogle Scholar
  55. Melander M, Ahman I, Kamnert I, Stromdahl AC (2003) Pea lectin expressed transgenically in oilseed rape reduces growth rate of pollen beetle larvae. Transgenic Res 12:555–567PubMedCrossRefGoogle Scholar
  56. Murdock LL, Huesing JE, Nielsen SS, Pratt RC, Shade RE (1990) Biological effects of plant lectins on the cowpea weevil. Phytochemistry 29:85–89CrossRefGoogle Scholar
  57. Murdock LL, Shade RE (2002) Lectins and protease inhibitors as plant defenses against insects. J Agric Food Chem 50:6605–6611PubMedCrossRefGoogle Scholar
  58. Musser RO, Hum-Musser SM, Eichenseer H, Peiffer M, Ervin G, Murphy JB, Felton GW (2002). Caterpillar salvia beats plant defenses. Nature 416:599–600PubMedCrossRefGoogle Scholar
  59. Neuteboom LW, Kunimitsu WY, Webb D, Christopher DA (2002) Characterization and tissue-regulated expression of genes involved in pineapple (Ananas comosus L.) root development. Plant Sci 163:1021–1035CrossRefGoogle Scholar
  60. Noghabi SS, Van Damme EJM, Smagghe G (2006) Bioassays for insecticidal activity of iris ribosome-inactivating proteins expressed in tobacco plants. Commun Agric Appl Biol Sci 71:285–289Google Scholar
  61. Okeola OG, Machuka J (2001) Biological effects of African yam bean lectins on Clavigralla tomentosicollis (Hemiptera: Coreidae). J Econ Entomol 94:724–729PubMedGoogle Scholar
  62. Osborn TC, Alexander DC, Sun SSM, Cardona C, Bliss FA (1988) Insecticidal activity and lectin homology of arcelin seed protein. Science 240:207–210CrossRefGoogle Scholar
  63. Paes NS, Gerhardt IR, Coutinho MV, Yokoyama M, Santana E, Harris N, Chrispeels MJ, de Sa MFG (2000) The effect of arcelin-1 on the structure of the midgut of bruchid larvae and immunolocalization of the arcelin protein. J Insect Physiol 46:393–402PubMedCrossRefGoogle Scholar
  64. Parret AH, Schoofs G, Proost P, De Mot R (2003) Plant lectin-like bacteriocin from a rhizosphere-colonizing Pseudomonas isolate. J Bacteriol 185:897–908PubMedCrossRefGoogle Scholar
  65. Parret AH, Temmerman K, De Mot R (2005) Novel lectin-like bacteriocins of biocontrol strain Pseudomonas fluorescens Pf-5. Appl Environ Microbiol 71:5197–5207PubMedCrossRefGoogle Scholar
  66. Peumans WJ, Barre A., Bras J, Rougé P, Proost P, Van Damme EJM (2002) The liverwort contains a lectin that is structurally and evolutionary related to the monocot mannose-binding lectins. Plant Physiol 129:1054–1065PubMedCrossRefGoogle Scholar
  67. Peumans WJ, Barre A, Hao Q, Rougé P, Van Damme EJM (2000) Higher plants developed structurally different motifs to recognize foreign glycans. Trends Glycosci Glycotechnol 12:83–101Google Scholar
  68. Peumans WJ, Fouquaert E, Jauneau A, Rougé P, Lannoo N, Hamada H, Alvarez R, Devreese B, Van Damme EJM (2007) The liverwort Marchantia polymorpha expresses orthologs of the fungal Agaricus bisporus agglutinin family. Plant Physiol 144:637–647PubMedCrossRefGoogle Scholar
  69. Peumans WJ, Hao Q, Van Damme EJM (2001) Ribosome-inactivating proteins from plants: more than RNA N-glycosidases? FASEB J 15:1493–1506PubMedCrossRefGoogle Scholar
  70. Peumans WJ, Smeets K, Van Nerum K, Van Leuven F, Van Damme EJM. (1997) Lectin and alliinase are the predominant proteins in the nectar from leek (Allium porrum) flowers. Planta 201:298–302PubMedCrossRefGoogle Scholar
  71. Peumans WJ, Van Damme EJM (1995) Lectins as plant defense proteins. Plant Physiol 109:347–352PubMedCrossRefGoogle Scholar
  72. Peumans WJ, Van Damme EJM (1996) Prevalence, biological activity and genetic manipulation of lectins in foods. Trends Food Sci Technol 7:132–138CrossRefGoogle Scholar
  73. Pham Trung N, Fitches E, Gatehouse JA (2006) A fusion protein containing a lepidopteran-specific toxin from the South Indian red scorpion (Mesobuthus tamulus) and snowdrop lectin shows oral toxicity to target insects. BMC Biotechnol 6:34–42CrossRefGoogle Scholar
  74. Poulsen M, Kroghsbo S, Schroder M, Wilcks A, Jacobsen H, Miller A, Frenzel T, Danier J, Rychlik M, Shu Q, Emami K, Sudhakar D, Gatehouse A, Engel KH, Knudsen I (2007) A 90-day safety study in Wistar rats fed genetically modified rice expressing snowdrop lectin Galanthus nivalis (GNA). Food Chem Toxicol 45:350–363PubMedCrossRefGoogle Scholar
  75. Powell KS (2001) Antimetabolic effects of plant lectins towards nymphal stages of the planthoppers Tarophagous proserpina and Nilaparvata lugens. Entomol Exp Appl 99:71–77CrossRefGoogle Scholar
  76. Powell KS, Gatehouse AMR, Hilder VA, Gatehouse JA (1993) Antimetabolic effects of plant lectins and plant and fungal enzymes on the nymphal stages of two important rice pests, Nilaparvata lugens and Nephotettex cinciteps. Entomol Exp Appl 66:119–126CrossRefGoogle Scholar
  77. Powell KS, Gatehouse AMR, Hilder VA, Gatehouse JA (1995a) Antifeedant effects of plant lectins and an enzyme on the adult stage of the rice brown planthopper, Nilaparvata lugens. Entomol Exp Appl 75:51–59CrossRefGoogle Scholar
  78. Powell KS, Gatehouse AMR, Peumans WJ, Van Damme EJM, Boonjawat J, Horsham K, Gatehouse JA (1995b) Different antimetabolic effects of related plant lectins towards nymphal stages of Nilaparvata lugens. Entomol Exp Appl 75:61–65CrossRefGoogle Scholar
  79. Powell KS, Spance J, Bharathi M, Gatehouse JA, Gatehouse AMR (1998) Immnuohistochemical and development studies to elucidate the mechanism of action of the snowdrop lectin on the rice brown planthopper, Nilaparvata lugens (Stal). J Insect Physiol 67:529–539CrossRefGoogle Scholar
  80. Pusztai A, Ewen SWB, Grant G, Peumans WJ, Van Damme EJM, Rubio L, Bardocz S (1990) The relationship between survival and binding of plant lectins during small intestinal passage and their effectiveness as growth factors. Digestion 46:308–316PubMedCrossRefGoogle Scholar
  81. Puthoff DP, Sardesai N, Subramanyam S, Nemacheck JA, Williams CE (2005) Hfr-2, a wheat cytolytic toxin-like gene, is upregulated by virulent Hessian fly larval feeding. Mol Plant Pathol 6:41–423CrossRefGoogle Scholar
  82. Rahbé Y, Sauvion N, Febvay G, Peumans WJ, Gatehouse AMR (1995) Toxicity of lectins and processing of ingested proteins in the pea aphid Acyrthosiphon pisum. Entomol Exp Appl 76:143–155CrossRefGoogle Scholar
  83. Rao KV, Rathore KS, Hodges TK, Fu X, Stoger E, Sudhakar D, Williams S, Christou P, Bharathi M, Bown DP, Powell KS, Spence J, Gatehouse AMR, Gatehouse JA (1998) Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown planthopper. Plant J 15:469–477PubMedCrossRefGoogle Scholar
  84. Reymond P, Bodenhausen N, Van Poecke RM, Krishnamurthy V, Dicke M, Farmer EE (2004) A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell 16:3132–3147PubMedCrossRefGoogle Scholar
  85. Rinderle SJ, Goldstein IJ, Matta KL, Ratcliffe RM (1989) Isolation and characterization of amaranthin, a lectin present in the seeds of Amaranthus caudatus, that recognizes the T- (or cryptic T)-antigen. J Biol Chem 264:16123–16131PubMedGoogle Scholar
  86. Sabnis DD, Hart JW (1978) The isolation and some properties of a lectin (haemagglutinin) from Cucurbita phloem exudate. Planta 142:97–101CrossRefGoogle Scholar
  87. Sadeghi A, Smagghe G, Broeders S, Hernalsteens JP, De Greve H, Peumans WJ, Van Damme EJM (2008) Ectopically expressed leaf and bulb lectins from garlic (Allium sativum L.) protect transgenic tobacco plants against cotton leafworm (Spodoptera littoralis). Transgenic Res 17:9–18PubMedCrossRefGoogle Scholar
  88. Sadeghi A, Van Damme EJM, Peumans WJ, Smagghe G (2006) Deterrent activity of plant lectins on cowpea weevil Callosobruchus maculatus (F.) oviposition. Phytochemistry 67:2078–2084PubMedCrossRefGoogle Scholar
  89. Saha P, Majumder P, Dutta I, Ray T, Roy SC, Das S (2006) Transgenic rice expressing Allium sativum leaf lectin with enhanced resistance against sap-sucking insect pests. Planta 223:1329–1343PubMedCrossRefGoogle Scholar
  90. Sastry MVK, Banerjee P, Patanjali SR, Swamy MJ, Swarnalatha GV, Surolia A (1986) Analysis of the saccharide binding to Artocarpus integrifolia lectin reveals specific recognition of T-antigen (β-D-Gal(1,3)D-GalNAc). J Biol Chem 261:11726–11733PubMedGoogle Scholar
  91. Sauvion N, Charles H, Febvay G, Rahbé Y (2004) Effects of jackbean lectin (ConA) on the feeding behaviour and kinetics of intoxication of the pea aphid, Acyrthosiphon pisum. Entomol Exp Appl 110:31–44CrossRefGoogle Scholar
  92. Sauvion N, Rahbé Y, Peumans WJ, Van Damme EJM, Gatehouse JA, Gatehouse AMR (1996) Effects of GNA and other mannose binding lectins on development and fecundity of the peach potato aphid Myzus persicae. Entomol Exp Appl 79:285–293CrossRefGoogle Scholar
  93. Sétamou M, Bernal JS, Mirkov TE, Legaspi JC (2003) Effects of snowdrop lectin on Mexican rice borer (Lepidoptera: Pyralidae) life history parameters. J Econ Entomol 96:950–956PubMedCrossRefGoogle Scholar
  94. Shade RE, Schroeder HE, Pueyo JJ, Tabe LM, Murdock LL, Higgins TJV, Chrispeels MJ (1994) Transgenic pea seeds expressing the α-amylase inhibitor of the common bean are resistant to bruchid beetles. Biotechnology 12:793–796CrossRefGoogle Scholar
  95. Sharma HC, Sharma KK, Crouch JH (2004) Genetic transformation of crops for insect resistance: potential and limitations. Crit Rev Plant Sci 23:47–72CrossRefGoogle Scholar
  96. Sharma V, Surolia A (1997) Analyses of carbohydrate recognition by legume lectins: size of the combining site loops and their primary specificity. J Mol Biol 267:433–445PubMedCrossRefGoogle Scholar
  97. Shukla S, Arora R, Sharma HC (2005) Biological activity of soybean trypsin inhibitor and plant lectins against cotton bollworm/legume pod borer, Helicoverpa armigera. Plant Biotechnol 22:1–6Google Scholar
  98. Singh T, Wu JH, Peumans WJ, Rougé P, Van Damme EJM, Alvarez RA, Blixt O, Wu AM (2006) Carbohydrate specificity of an insecticidal lectin isolated from the leaves of Glechoma hederacea (ground ivy) towards mammalian glycoconjugates. Biochem J 393:331–341PubMedCrossRefGoogle Scholar
  99. Stirpe F (2004) Ribosome-inactivating proteins. Toxicon 44:371–383PubMedCrossRefGoogle Scholar
  100. Stoger E, William S, Christou P, Down RE, Gatehouse JA (1999) Expression of the insecticidal lectin from snowdrop (Galanthus nivalis agglutinin; GNA) in transgenic wheat plants: effects on predation by the grain aphid Sitobion avenae. Mol Breed 5:65–73CrossRefGoogle Scholar
  101. Subramanyam S, Sardesai N, Puthoff DP, Meyer JM, Nemacheck JA, Gonzalo M, Williams CE (2006) Expression of two wheat defense-response genes, Hfr-1 and Wci-1, under biotic and abiotic stress. Plant Sci 170:90–103CrossRefGoogle Scholar
  102. Tsutsui S, Tasumi S, Suetake H, Suzuki Y (2003) Lectins homologous to those of monocotyledonous plants in the skin mucus and intestine of pufferfish, Fugu rubripes. J Biol Chem 278:20882–20889PubMedCrossRefGoogle Scholar
  103. Van Damme EJM, Allen AK, Peumans WJ (1987) Isolation and characterization of a lectin with exclusive specificity towards mannose from snowdrop (Galanthus nivalis) bulbs. FEBS Lett 215:140–144CrossRefGoogle Scholar
  104. Van Damme EJM, Barre A, Rougé P, Peumans WJ (2004). Cytoplasmic/nuclear plant lectins: a new story. Trends Plant Sci 9:484–489PubMedCrossRefGoogle Scholar
  105. Van Damme EJM, Barre A, Verhaert P, Rougé P, Peumans WJ (1996) Molecular cloning of the mitogenic mannose/maltose-specific rhizome lectin from Calystegia sepium. FEBS Lett 397:352–356PubMedCrossRefGoogle Scholar
  106. Van Damme EJM, Culerrier R, Barre A, Alvarez R, Rougé, P, Peumans WJ (2007a) A novel family of lectins evolutionarily related to class V chitinases: an example of neofunctionalization in legumes. Plant Physiol 144:662–672CrossRefGoogle Scholar
  107. Van Damme EJM, Hao Q, Chen Y, Barre A, Vandenbussche F, Desmyter S, Rougé P, Peumans WJ (2001) Ribosome-inactivating proteins: a family of plant proteins that do more than inactivate ribosomes. Crit Rev Plant Sci 20:395–465CrossRefGoogle Scholar
  108. Van Damme EJM, Peumans WJ, Barre A, Rougé P (1998a) Plant lectins: a composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Crit Rev Plant Sci 17:575–692CrossRefGoogle Scholar
  109. Van Damme EJM, Peumans WJ, Pusztai A, Bardocz S (1998b) Handbook of plant lectins: properties and biomedical applications. John Wiley & Sons, Chichester, UKGoogle Scholar
  110. Van Damme EJM, Rougé P, Peumans WJ (2007b) Carbohydrate–protein interactions: plant lectins. In: Kamerling JP, Boons GJ, Lee YC, Suzuki A, Taniguchi N, Voragen AGJ (eds) Comprehensive glycoscience – from chemistry to systems biology. Elsevier, Oxford, UK, vol 3,pp 563–599Google Scholar
  111. Van Damme EJM, Smeets K, Engelborghs I, Aelbers H, Balzarini J, Pusztai A, Van Leuven F, Goldstein IJ, Peumans WJ (1993) Cloning and characterization of the lectin cDNA clones from onion, shallot and leek. Plant Mol Biol 23:365–376PubMedCrossRefGoogle Scholar
  112. Vandenbussche F, Desmyter S, Ciani M, Proost P, Peumans WJ, Van Damme EJM (2004a) Analysis of the in planta antiviral activity of elderberry ribosome-inactivating proteins. Eur J Biochem 271:1508–1515CrossRefGoogle Scholar
  113. Vandenbussche F, Peumans WJ, Desmyter S, Proost, P, Ciani M, Van Damme EJM (2004b) The type-1 and type-2 ribosome-inactivating proteins from Iris confer transgenic tobacco plants local but not systemic protection against viruses. Planta 220:211–221CrossRefGoogle Scholar
  114. Waljuno K, Scholma RA, Beintema J, Mariono A, Hahn AM (1975) Amino acid sequence of hevein. In: Proceedings of the International Rubber Conference, Kuala Lumpur, vol 2. Rubber Research Institute of Malaysia, Kuala Lumpur, pp 518–531Google Scholar
  115. Wang P, Li G, Granados RR (2004). Identification of two new peritrophic membrane proteins from larval Trichoplusia ni: structural characteristics and their functions in the protease rich insect gut. Insect Biochem Mol Biol 34:215–227PubMedCrossRefGoogle Scholar
  116. Wang W, Hause B, Peumans WJ, Smagghe G, Mackie A, Fraser R, Van Damme EJM (2003b) The Tn antigen-specific lectin from ground ivy is an insecticidal protein with an unusual physiology. Plant Physiol 132:1322–1334CrossRefGoogle Scholar
  117. Wang W, Peumans WJ, Rougé P, Rossi C, Proost P, Chen J, Van Damme EJM (2003a) Leaves of the Lamiaceae species Glechoma hederacea (ground ivy) contain a lectin that is structurally and evolutionary related to the legume lectins. Plant J 33:293–304CrossRefGoogle Scholar
  118. Wei GQ, Liu RS, Wang Q, Liu WY (2004) Toxicity of two type II ribosome-inactivating proteins (cinnamomin and ricin) to domestic silkworm larvae. Arch Insect Biochem Physiol 57:160–165PubMedCrossRefGoogle Scholar
  119. Williams CE, Collier CC, Nemacheck JA, Liang C, Cambron SE (2002) A lectin-like wheat gene responds systemically to attempted feeding by avirulent first-instar Hessian fly larvae. J Chem Ecol 28:1411–1428PubMedCrossRefGoogle Scholar
  120. Wu AM (2005) Lectinochemical studies on the glyco-recognition factors of a Tn (α–>Ser/Thr) specific lectin isolated from the seeds of Salvia sclarea. J Biomed Sci 12:167–184PubMedCrossRefGoogle Scholar
  121. Wu J, Luo X, Guo H, Xiao J, Tian Y (2006) Transgenic cotton, expressing Amaranthus caudatus agglutinin, confers enhanced resistance to aphids. Plant Breed 125:390–394CrossRefGoogle Scholar
  122. Yagi F, Hidaka M, Minami Y, Tadera K (1996) A lectin from leaves of Neoregelia flandria recognizes D-glucose, D-mannose and N-acetylglucosamine, differing from the mannose-specific lectins from other monocotyledonous species. Plant Cell Physiol 37:1007–1012PubMedGoogle Scholar
  123. Yao J, Pang Y, Qi H, Wan B, Zhao X, Kong W, Sun X, Tang K (2003) Transgenic tobacco expressing Pinellia ternata agglutinin confers enhanced resistance to aphids. Transgenic Res 12:715–722PubMedCrossRefGoogle Scholar
  124. Young NM, Oomen RP (1992) Analysis of sequence variation among legume lectins. A ring of hypervariable residues forms the perimeter of the carbohydrate-binding site. J Mol Biol 228:924–934PubMedCrossRefGoogle Scholar
  125. Zhang W, Peumans WJ, Barre A, Houles-Astoul C, Rovira P, Rougé P, Proost P, Truffa-Bachi P, Jalali AAH, Van Damme EJM (2000) Isolation and characterization of a jacalin-related mannose-binding lectin from salt-stressed rice (Oryza sativa) plants. Planta 210:970–978PubMedCrossRefGoogle Scholar
  126. Zhou X, Li XD, Yuan JZ, Tang ZH, Liu WY (2000) Toxicity of cinnamomin – a new type II ribosome-inactivating protein to bollworm and mosquito. Insect Biochem Mol Biol 30:259–264PubMedCrossRefGoogle Scholar
  127. Zhu K, Huesing JE, Shade RE, Bressan RA, Hasegawa PM, Murdock LL (1996) An insecticidal N-acetylglucosamine-specific lectin gene from Griffonia simplicifolia (Leguminosae). Plant Physiol 110:195–202PubMedCrossRefGoogle Scholar
  128. Zhu-Salzman K, Salzman RA (2001) Functional mechanics of the plant defensive Griffonia simplicifolia lectin II: resistance to proteolysis is independent of glycoconjugate binding in the insect gut. J Econ Entomol 94:1280–1284PubMedGoogle Scholar
  129. Zhu-Salzman K, Salzman RA, Koiwa H, Murdock LL, Bressan RA, Hasegawa PM (1998) Ethylene negatively regulates local expression of plant defense lectin genes. Physiol Plant 104:365–372CrossRefGoogle Scholar
  130. Zhu-Salzman K, Shade RE, Koiwa H, Salzman RA, Narasimhan M, Bressam RA, Hasegawa PM, Murdock LL (1996) Carbohydrate binding and resistance to proteolysis control insecticidal activity of Griffonia simplicifolia lectin II. Proc Natl Acad Sci USA 95:15123–15128CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Els J.M. Van Damme
    • 1
  1. 1.Laboratory of Biochemistry and Glycobiology, Department of Molecular BiotechnologyGhent University9000 GentBelgium

Personalised recommendations