Defense by Pyrrolizidine Alkaloids: Developed by Plants and Recruited by Insects

  • Thomas Hartmann
  • Dietrich Ober


Pyrrolizidine Alkaloid Chem Ecol Senecio Species Arctiid Moth Biochem Syst Ecol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anke S, Niemuller D, Moll S, Hansch R, Ober D (2004) Polyphyletic origin of pyrrolizidinealkaloids within the Asteraceae. Evidence from differential tissue expression of homospermidine synthase. Plant Physiol 136:4037–4047PubMedCrossRefGoogle Scholar
  2. Aplin RT, Benn MH, Rothschild M (1968) Poisonos alkaloids in the body tissues of the cinnabar moth (Callimorpha jacobaeae L.). Nature 219:747–748CrossRefGoogle Scholar
  3. Bernays EA, Chapman RF, Hartmann T (2002a) A highly sensitive taste receptor cell for pyrrolizidine alkaloids in the lateral galeal sensillum of a polyphagous caterpillar, Estigmene acrea. J Comp Physiol A 188:715–723CrossRefGoogle Scholar
  4. Bernays EA, Chapman RF, Hartmann T (2002b) A taste receptor neurone dedicated to the perception of pyrrolizidine alkaloids in the medial galeal sensillum of two polyphagous arctiid caterpillars. Physiol Entomol 27:1–10CrossRefGoogle Scholar
  5. Bernays EA, Edgar JA, Rothschild M (1977) Pyrrolizidine alkaloids sequestered and stored by the aposematic grasshopper, Zonocerus variegatus. J Zool, 182:85–87Google Scholar
  6. Bernays EA, Rodrigues D, Chapman RF, Singer MS, Hartmann T (2003) Loss of gustatory responses to pyrrolizidine alkaloids after their extensive ingestion in the polyphagous caterpillar Estigmene acrea. J Exp Biol 206:487–4496CrossRefGoogle Scholar
  7. Beuerle T, Theuring C, Klewer N, Schulz S, Hartmann T (2007) Absolute configuration of the creatonotines and callimorphines, two classes of arctiid-specific pyrrolizidine alkaloids. Insect Biochem Mol Biol 37:80–89PubMedCrossRefGoogle Scholar
  8. Bezzerides A, Yong TH, Bezzerides J, Husseini J, Ladau J, Eisner M, Eisner T (2004) Plant-derived pyrrolizidine alkaloid protects eggs of a moth (Utetheisa ornatrix) against a parasitoid wasp (Trichogramma ostriniae). Proc Natl Acad Sci USA 101:9029–9032PubMedCrossRefGoogle Scholar
  9. Boppré M (1984) Redefining ‘pharamcophagy’. J Chem Ecol 10:1151–1154CrossRefGoogle Scholar
  10. Boppré M (1986) Insects pharmacophagously utilizing defensive plant chemicals (pyrrolizidine alkaloids). Naturwissenschaften 73:17–26CrossRefGoogle Scholar
  11. Boppré M (1990) Lepidoptera and pyrrolizidine alkaloids: exemplification of complexity in chemical ecology. J Chem Ecol 16:165–185CrossRefGoogle Scholar
  12. Böttcher F, Adolph RD, Hartmann T (1993) Homospermidine synthase, the first pathway-specific enzyme in pyrrolizidine alkaloid biosynthesis. Phytochemistry 32:679–689CrossRefGoogle Scholar
  13. Böttcher F, Ober D, Hartmann T (1994) Biosynthesis of pyrrolizidine alkaloids: putrescine and spermidine are essential substrates of enzymatic homospermidine formation. Can J Chem 72:80–85Google Scholar
  14. Brattsten LB (1992) Metabolic defenses against plant allelochemicals. In: Rosenthal GA, Berenbaum MR (eds) Herbivores: their interactions with secondary metabolites, vol 2. Academic Press, San Diego, pp 175–242Google Scholar
  15. Brown KSJ (1984) Adult-obtained pyrrolizidine alkaloids defend ithomiine butterflies against a spider predator. Nature 309:707–709CrossRefGoogle Scholar
  16. Brown KSJ (1987) Chemistry at the solanaceae/ithomiinae interface. Ann Missouri Bot Gard 74: 359–397CrossRefGoogle Scholar
  17. Caraglia M, Marra M, Giuberti G, D’Alessandro AM, Budillon A, del Prete S, Lentini A, Beninati S, Abbruzzese A (2001) The role of eukaryotic initiation factor 5A in the control of cell proliferation and apoptosis. Amino Acids 20:91–104PubMedCrossRefGoogle Scholar
  18. Cheeke PR (ed) (1998) Natural toxicants in feeds, forages, and poisonous plants. Interstate, DanvilleGoogle Scholar
  19. Conner WE, Roach B, Benedict E, Meinwald J, Eisner T (1990) Courtship pheromone production and body size as correlates of larval diet in males of the arctiid moth Utetheisa ornatrix. J Chem Ecol 16:543–552CrossRefGoogle Scholar
  20. Conner WE, Weller, SJ (2004) A quest for alkaloids: the curious relationship between tiger moths and plants containing pyrrolizidine alkaloids. In: Cardé RT, Millar JG (eds) Advances in insect chemical ecology. University Press, Cambridge, pp 248–282Google Scholar
  21. Dobler S, Haberer W, Witte L, Hartmann T (2000) Selective sequestration of pyrrolizidine alkaloids from diverse host plants by Longitarsus flea beetles. J Chem Ecol 26:1281–1298CrossRefGoogle Scholar
  22. Dussourd DE, Ubik K, Harvis C, Resch J, Meinwald J, Eisner T (1988) Biparental defensive endowment of eggs with acquired plant alkaloid in the moth Utetheisa ornatrix. Proc Natl Acad Sci USA 85:5992–5996PubMedCrossRefGoogle Scholar
  23. Edgar JA (1982) Pyrrolizidine alkaloids sequestered by Salomon Island Danainae butterflies. The feeding preferences of the Danainae and Ithomiinae. J Zool 196:385–399CrossRefGoogle Scholar
  24. Edgar JA, Culvenor CCJ, Cockrum PA, Smith LW (1980) Callimorphine: identification and symthesis of the cinnabar moth ‘metabolite’. Tetrahedron Lett 21:1383–1384CrossRefGoogle Scholar
  25. Ehmke A, Von Borstel K, Hartmann T (1988) Alkaloid $N$-oxides as transport and vacuolar storage compounds of pyrrolizidine alkaloids in Senecio vulgaris L. Planta 176:83–90CrossRefGoogle Scholar
  26. Ehmke A, Witte L, Biller A, Hartmann T (1990) Sequestration, $N$-oxidation and transformation of plant pyrrolizidine alkaloids by the arctiid moth Tyria jacobaeae L. $Z$. Naturforsch C 45: 1185–1192Google Scholar
  27. Eisner T, Eisner M (1991) Unpalatability of the pyrrolizidine alkaloid-containing moth Utetheisa ornatrix and its larva to wolf spiders. Psyche Cambridge 98:111–118Google Scholar
  28. Eisner T, Eisner M, Rossini C, Iyengar VK, Roach BL, Benedikt E, Meinwald J (2000) Chemical defense against predation in an insect egg. Proc Natl Acad Sci USA 97:1634–1639PubMedCrossRefGoogle Scholar
  29. Eisner T, Rossini C, Gonzalez A, Iyengar VK, Siegler MVS, Smedley SR (2002) Paternal investment in egg defence. In: Hilker M, Meiners T (eds) Chemoecology of insect eggs and egg deposition. Blackwell, Oxford, pp 91–116Google Scholar
  30. Frei H, Lüthy J, Bräuchli J, Zweifel U, Wurgler FE, Schlatter C (1992) Structure/activity relationships of the genotoxic potencies of sixteen pyrrolizidine alkaloids assayed for the induction of somatic mutation and recombination in wing cells of Drosophila melanogaster. Chem Biol Interact 83:1–22PubMedCrossRefGoogle Scholar
  31. Frölich C, Hartmann T, Ober D (2006) Tissue distribution and biosynthesis of 1,2-saturated pyrrolizidine alkaloids in Phalaenopsis hybrids (Orchidaceae). Phytochemistry 67:1493–1502PubMedCrossRefGoogle Scholar
  32. Frölich C, Ober D, Hartmann T (2007) Tissue distribution, core biosynthesis and diversification of pyrrolizidine alkaloids of the lycopsamine type in three Boraginaceae species. Phytochemistry 68:1026–1037PubMedCrossRefGoogle Scholar
  33. Fu PP, Xia Q, Lin G, Chou MW (2004) Pyrrolizidine alkaloids – genotoxicity, metabolism enzymes, metabolic activation, and mechanisms. Drug Metab Rev 36:1–55PubMedCrossRefGoogle Scholar
  34. Glendinning JI (2002) How do herbivorous insects cope with noxious secondary plant compounds in their diet? Entomol Exp Appl 104:15–25CrossRefGoogle Scholar
  35. Glendinning JI, Slansky F (1995) Consumption of a toxic food by caterpillars increases with dietary exposure: support for a role of induced detoxification enzymes. J Comp Physiol A 176:337–345CrossRefGoogle Scholar
  36. Gonzalez A, Rossini C, Eisner M, Eisner T (1999) Sexually transmitted chemical defense in a moth (Utetheisa ornatrix). Proc Natl Acad Sci USA 96:5570–5574PubMedCrossRefGoogle Scholar
  37. Haberer W, Dobler S (1999) Quantitative analysis of pyrrolizidine alkaloids sequestered from diverse host plants in Longitarsus flea beetles (Coleoptera, Chrysomelidae). Chemoecology 9:169–179CrossRefGoogle Scholar
  38. Hare JF, Eisner T (1993) Pyrrolizidine alkaloid deters ant predators of Utetheisa ornatrix eggs: effects of alkaloid concentration, oxidation state, and prior exposure of ants to alkaloid-laden prey. Oecologia 96:9–18CrossRefGoogle Scholar
  39. Hartmann T (1999) Chemical ecology of pyrrolizidine alkaloids. Planta 207:483–495CrossRefGoogle Scholar
  40. Hartmann T, Biller A, Witte L, Ernst L, Boppre M (1990) Transformation of plant pyrrolizidine alkaloids into novel insect alkaloids by arctiid moths (Lepidoptera). Biochem Syst Ecol 18:549–554CrossRefGoogle Scholar
  41. Hartmann T, Dierich B (1998) Chemical diversity and variation of pyrrolizidine alkaloids of the senecionine type: biological need or coincidence? Planta 206:443–451CrossRefGoogle Scholar
  42. Hartmann T, Ehmke A, Eilert U, von Borstel, K, Theuring C (1989) Sites of synthesis, translocation and accumulation of pyrrolizidine alkaloid $N$-oxides in Senecio vulgaris L. Planta 177:98–107CrossRefGoogle Scholar
  43. Hartmann T, Ober D (2000) Biosynthesis and metabolism of pyrrolizidine alkaloids on plants and specialized insect herbivores. Top Curr Chem 209:207–243Google Scholar
  44. Hartmann T, Theuring C, Bernays EA (2003) Are insect-synthesized retronecine esters (creatonotines) the precursors of the male courtship pheromone in the arctiid moth Estigmene acrea? J Chem Ecol 29:2603–2608PubMedCrossRefGoogle Scholar
  45. Hartmann T, Theuring C, Beuerle T, Bernays EA, Singer MS (2005a) Acquisition, transformation and maintenance of plant pyrrolizidine alkaloids by the polyphagous arctiid Grammia geneura. Insect Biochem Mol Biol 35:1083–99CrossRefGoogle Scholar
  46. Hartmann T, Theuring C, Beuerle T, Klewer N, Schulz S, Singer, MS, Bernays EA (2005b) Specific recognition, detoxification and metabolism of pyrrolizidine alkaloids by the polyphagous arctiid Estigmene acrea. Insect Biochem Mol Biol 35:391–411CrossRefGoogle Scholar
  47. Hartmann T, Theuring C, Schmidt J, Rahier M, Pasteels JM (1999) Biochemical strategy of sequestration of pyrrolizidine alkaloids by adults and larvae of chrysomelid leaf beetles. J Insect Physiol 45:1085–1095PubMedCrossRefGoogle Scholar
  48. Hartmann T, Theuring C, Witte L, Pasteels JM (2001) Sequestration, metabolism and partial synthesis of tertiary pyrrolizidine alkaloids by the neotropical leaf-beetle Platyphora boucardi. Insect Biochem Mol Biol 31:1041–1056PubMedCrossRefGoogle Scholar
  49. Hartmann T, Toppel G (1987) Senecionine N-oxide, the primary product of pyrrolizidine alkaloid biosynthesis in root cultures of Senecio vulgaris. Phytochemistry 26:1639–1644CrossRefGoogle Scholar
  50. Hartmann T, Witte L (1995) Pyrrolizidine alkaloids: chemical, biological and chemoecological aspects. In: Pelletier SW (ed) Alkaloids: chemical and biological perspectives, vol 9. Pergamon Press, Oxford, pp 155–233Google Scholar
  51. Hartmann T, Witte L, Ehmke A, Theuring C, Rowell-Rahier M, Pasteels JM (1997) Selective sequestration and metabolism of plant derived pyrrolizidine alkaloids by chrysomelid leaf beetles. Phytochemistry 45:489–497CrossRefGoogle Scholar
  52. Hartmann T, Zimmer M (1986) Organ-specific distribution and accumulation of pyrrolizidine alkaloids during the life history of two annual Senecio species. J Plant Physiol 122:67–80Google Scholar
  53. Huan JY, Miranda CL, Buhler DR, Cheeke PR (1998a) The roles of CYP3A and CYP2B isoforms in hepatic bioactivation and detoxification of the pyrrolizidine alkaloid senecionine in sheep and hamsters. Toxicol Appl Pharmacol 151:229–235CrossRefGoogle Scholar
  54. Huan JY, Miranda CL, Buhler DR, Cheeke PR (1998b) Species differences in the hepatic microsomal enzyme metabolism of the pyrrolizidine alkaloids. Toxicol Lett 99:127–137CrossRefGoogle Scholar
  55. Iyengar VK, Rossini C, Eisner T (2001) Precopulatory assessment of male quality in an arctiid moth (Utetheisa ornatrix): hydroxydanaidal is the only criterion of choice. Behav Ecol Sociobiol 49:283–288CrossRefGoogle Scholar
  56. Jenett-Siems K, Ott SC, Schimming T, Siems K, Muller F, Hilker M, Witte L, Hartmann T, Austin DF, Eich E (2005) Ipangulines and minalobines, chemotaxonomic markers of the infrageneric Ipomoea taxon subgenus Quamoclit, section Mina. Phytochemistry 66:223–231PubMedCrossRefGoogle Scholar
  57. Jenett-Siems K, Schimming T, Kaloga M, Eich E, Siems K, Gupta MP, Witte L, Hartmann T (1998) Pyrrolizidine alkaloids of Ipomoea hederifolia and related species. Phytochemistry 47:1551–1560CrossRefGoogle Scholar
  58. Klitzke CF, Trigo JR (2000) New records of pyrrolizidine alkaloid-feeding insects. Hemiptera and Coleoptera on Senecio brasiliensis. Biochem Syst Ecol 28:313–318PubMedCrossRefGoogle Scholar
  59. Lindigkeit R, Biller A, Buch M, Schiebel HM, Boppré M, Hartmann T (1997) The two faces of pyrrolizidine alkaloids: the role of the tertiary amine and its N-oxide in chemical defense of insects with acquired plant alkaloids. Eur J Biochem 245:626–636PubMedCrossRefGoogle Scholar
  60. Macel M, Bruinsma M, Dijkstra SM, Ooijendijk T, Niemeyer HM, Klinkhamer PGL (2005) Differences in effects of pyrrolizidine alkaloids on five generalist insect herbivore species. J Chem Ecol 31:1493–1508PubMedCrossRefGoogle Scholar
  61. Macel M, Vrieling K, Klinkhamer PG (2004) Variation in pyrrolizidine alkaloid patterns of Senecio jacobaea. Phytochemistry 65:865–873PubMedCrossRefGoogle Scholar
  62. Marín Loaiza JC, Céspedes CL, Beuerle T, Theuring C, Hartmann T (2007) Ceroplastes albolineatus, the first scale insect shown to sequester pyrrolizidine alkaloids from its host-plant Pittocaulon praecox. Chemoecology 17:109–115CrossRefGoogle Scholar
  63. Mattocks AR (ed) (1986) Chemistry and toxicology of pyrrolizidine alkaloids. Academic Press, LondonGoogle Scholar
  64. Moll S, Anke S, Kahmann U, Hänsch R, Hartmann T, Ober D (2002) Cell specific expression of homospermidine synthase, the entry enzyme of the pyrrolizidine alkaloids in Senecio vernalis in comparison to its ancestor deoxyhypusine synthase. Plant Physiol 130:47–57PubMedCrossRefGoogle Scholar
  65. Narberhaus I, Zintgraf V, Dobler S (2005) Pyrrolizidine alkaloids on three trophic levels – evidence for toxic and deterrent effects on phytophages and predators. Chemoecology 15:121–125CrossRefGoogle Scholar
  66. Naumann C, Hartmann T, Ober D (2002) Evolutionary recruitment of a flavin-dependent monooxygenase for the detoxification of host plant-acquired pyrrolizidine alkaloids in the alkaloid-defended arctiid moth Tyria jacobaeae. Proc Natl Acad Sci USA 99:6085–6090PubMedCrossRefGoogle Scholar
  67. Ober D (2005) Seeing double – gene duplication and diversification in plant secondary metabolism. Trends Plant Sci 10:444–449PubMedCrossRefGoogle Scholar
  68. Ober D, Harms R, Witte L, Hartmann T (2003) Molecular evolution by change of function: alkaloid-specific homospermidine synthase retained all properties of deoxyhypusine synthase except binding the eIF5A precursor protein. J Biol Chem 278:12805–12815PubMedCrossRefGoogle Scholar
  69. Ober D, Hartmann T (1999) Homospermidine synthase, the first pathway-specific enzyme of pyrrolizidine alkaloid biosynthesis, evolved from deoxyhypusine synthase. Proc Natl Acad Sci USA 96:14777–14782PubMedCrossRefGoogle Scholar
  70. Ober D, Hartmann T (2000) Phylogenetic origin of a secondary pathway: the case of pyrrolizidine alkaloids. Plant Mol Biol 44:445–450PubMedCrossRefGoogle Scholar
  71. Pasteels JM, Rowell-Rahier M, Randoux T, Braekman JC, Daloze D (1988) Pyrrolizidine alkaloids of probable host-plant origin in the pronotal and elytral secretion of the leaf beetle Oreina cacaliae. Entomol Exp Appl 49:55–88CrossRefGoogle Scholar
  72. Pasteels JM, Termonia A, Windsor D, Witte L, Theuring C, Hartmann T (2001) Pyrrolizidine alkaloids and pentacyclic triterpene saponins in the defensive secretions of Platyphora leaf beetles. Chemoecology 11:113–120CrossRefGoogle Scholar
  73. Pelser PB, de Vos H, Theuring C, Beuerle T, Vrieling K, Hartmann T (2005) Frequent gain and loss of pyrrolizidine alkaloids in the evolution of Senecio section Jacobaea (Asteraceae). Phytochemistry 66:1285–1295PubMedCrossRefGoogle Scholar
  74. Prakash AS, Pereira TN, Reilly PEB, Seawright AA (1999) Pyrrolizidine alkaloids in human diet. Mutat Res 443:53–67PubMedGoogle Scholar
  75. Reimann A, Nurhayati N, Backenköhler A, Ober D (2004) Repeated evolution of the pyrrolizidine alkaloid-mediated defense system in separate angiosperm lineages. Plant Cell 16:2772–2784PubMedCrossRefGoogle Scholar
  76. Robins DJ (1989) Biosynthesis of pyrrolizidine alkaloids. Chem Soc Rev 18:375–408CrossRefGoogle Scholar
  77. Schneider D (1987) The strange fate of pyrrolizidine alkaloids. In: Chapman RF, Bernays EA, Stoffolano JG (eds) Perspectives in chemoreception and behavior. Springer, New York, pp 123–142Google Scholar
  78. Schulz S, Francke W, Boppré M, Eisner T, Meinwald J (1993) Insect pheromone biosynthesis: stereochemical pathway of hydroxydanaidal production from alkaloidal precursors in Creatonotos transiens (Lepidoptera, Arctiidae). Proc Natl Acad Sci USA 90:6834–6838PubMedCrossRefGoogle Scholar
  79. Scott JG, Liu N, Wen Z (1998) Insect cytochromes P450: diversity, insecticide resistance and tolerance to plant toxins. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 121:147–155PubMedCrossRefGoogle Scholar
  80. Singer MS, Carrière Y, Theuring C, Hartmann T (2004a) Disentangeling food quality from resistance against parasitoids: diet choice by a generalist caterpillar. Am Nat 164:424–429CrossRefGoogle Scholar
  81. Singer MS, Rodrigues D, Stireman JOI, Carrière Y (2004b) Roles of food quality and enemy-free space in host use by a generalist insect herbivore. Ecology 85:2747–2753CrossRefGoogle Scholar
  82. Spenser ID (1985) Stereochemical aspects of the biosynthetic routes leading to the pyrrolizidine and quinolizidine alkaloids. Pure Appl Chem 57:453–470CrossRefGoogle Scholar
  83. Stegelmeier BL, Edgar JA, Colegate SM, Gardner DR, Schoch TK, Coulombe RA, Molyneux RJ (1999) Pyrrolizidine alkaloid plants, metabolism and toxicity. J Nat Tox 8:95–116Google Scholar
  84. Trigo JR, Brown KS, Henriques SA, Barata LES (1996) Qualitative patterns of pyrrolizidine alkaloids in ithomiinae butterflies. Biochem Syst Ecol 24:181–188CrossRefGoogle Scholar
  85. van Dam NM, Verporte R, van der Mejden E (1994) Extreme differences in pyrrolizidine alkaloid levels between leaves of Cynoglossum officinale. Phytochemistry 37:1013–1016CrossRefGoogle Scholar
  86. van Dam NM, Vuister LWM, Bergshoff C, de Vos H, van der Meijden E (1995a) The ‘raison d’être’ of pyrrolizidine alkaloids in Cynoglossum officinale: deterrent effects against generalist herbivores. J Chem Ecol 21:507–523CrossRefGoogle Scholar
  87. van Dam NM, Witte L, Theuring C, Hartmann T (1995b) Distribution, biosynthesis and turnover of pyrrolizidine alkaloids in Cynoglossum officinale. Phytochemistry 39:287–292CrossRefGoogle Scholar
  88. von Borstel K, Witte L, Hartmann T (1989) Pyrrolizidine alkaloid patterns in populations of Senecio vulgaris, Senecio vernalis and their hybrids. Phytochemistry 28:1635–1638CrossRefGoogle Scholar
  89. Vrieling K, de Boer NJ (1999) Host-plant choice and larval growth in the cinnabar moth: do pyrrolizidine alkaloids play a role. Entomol Exp Appl 91:251–257CrossRefGoogle Scholar
  90. Vrieling K, de Vos H, van Wijk CAM (1993) Genetic analysis of the concentrations of pyrrolizidine alkaloids in Senecio jacobaea. Phytochemistry 32:1141–1144CrossRefGoogle Scholar
  91. Vrieling K, Derridj S (2003) Pyrrolizidine alkaloids in and on the leaf surface of Senecio jacobaea L. Phytochemistry 64:1223–1228PubMedCrossRefGoogle Scholar
  92. Williams DE, Reed RL, Kedzierski B, Dannan GA, Guengerich FP, Buhler DR (1989a) Bioactivation and detoxication of the pyrrolizidine alkaloid senecionine by cytochrome P-450 enzymes in rat liver. Drug Metab Dispos 17:387–392Google Scholar
  93. Williams DE, Reed RL, Kedzierski B, Ziegler DM, Buhler DR (1989b) The role of flavin-containing monooxygenase in the N-oxidation of the pyrrolizidine alkaloid senecionine. Drug Metab Dispos 17:380–386Google Scholar
  94. Wink M, Mohamed GIA (2003) Evolution of chemical defense traits in the Leguminosae: mapping of distribution patterns of secondary metabolites on a molecular phylogeny inferred from nucleotide sequences of the rbcL gene. Biochem Syst Ecol 31:897–917CrossRefGoogle Scholar
  95. Witte L, Ehmke A, Hartmann T (1990) Interspecific flow of pyrrolizidine alkaloids; from plants via aphids to ladybirds. Naturwissenschaften 77:540–543CrossRefGoogle Scholar
  96. Witte L, Ernst L, Adam H, Hartmann T (1992) Chemotypes of two pyrrolizidine alkaloid-containing Senecio spp. Phytochemistry 31:559–566CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Thomas Hartmann
    • 1
  • Dietrich Ober
  1. 1.Institute of Pharmaceutical Biology, Technical University of BraunschweigD-38106 BraunschweigGermany

Personalised recommendations