Advertisement

Dual-Phase-Lagging and Porous-Medium Heat Conduction Processes

  • Liqiu Wang
  • Mingtian Xu
  • Xiaohao Wei
Part of the Theory and Applications of Transport in Porous Media book series (TATP, volume 22)

Abstract

We review some major progresses on dual-phase-lagging heat conduction and its intrinsic application in porous-medium heat conduction. The topics include well-posedness, solution structure, thermal wave and resonance, and intrinsic equivalence between the dual-phase-lagging heat conduction and the Fourier heat conduction in porous media subject to lack of local thermal equilibrium.

Keywords

Porous Medium Heat Conduction Representative Elementary Volume Heat Conduction Equation Local Thermal Equilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anisimòv SI, Kapeliovich BL, Perelman TL (1974) Sov. Phys. JETP 39: 375–377.Google Scholar
  2. Antaki P (1998) Int. J. Heat Mass Transfer 41: 2253–2258.CrossRefzbMATHGoogle Scholar
  3. Auriault JL (1991) Int. J. Engng Sci. 29: 785–795.CrossRefzbMATHGoogle Scholar
  4. Bejan A (2004) Convection heat transfer (3rd ed). Wiley, New York.Google Scholar
  5. Bejan A, Dincer I, Lorente S, Miguel AF, Reis AH (2004) Porous and complex flow structures in modern technologies. Springer, New York.Google Scholar
  6. Chester M (1963) Phys. Rev. 131: 2013–2015.CrossRefGoogle Scholar
  7. Dai W, Nassar R (1999) Numer. Meth. Part. Di. E. 15: 697–708.CrossRefMathSciNetzbMATHGoogle Scholar
  8. Fournier D. Boccara AC (1989) Physica A 157: 587–592.CrossRefGoogle Scholar
  9. Glatzmaier GC, Ramirez WF (1988) Chem. Eng Sci 43: 3157–3169.CrossRefGoogle Scholar
  10. Guyer RA, Krumhansi JA (1966) Phys. Rev. 148: 766–778.CrossRefGoogle Scholar
  11. Hays-Stang KJ, Haji-Sheikh A (1999) Int J Heat Mass Transfer 42: 455–465.CrossRefzbMATHGoogle Scholar
  12. Joseph DD, Preziosi L (1989) Rev. Mod. Phys. 61: 41–73.CrossRefMathSciNetzbMATHGoogle Scholar
  13. Kaganov MI, Lifshitz IM, Tanatarov MV (1957) Sov. Phys. JETP 4: 173–178.zbMATHGoogle Scholar
  14. Lin CK, Hwang CC, Chang YP (1997) Int. J. Heat Mass Tran. 40: 1716–1719.CrossRefzbMATHGoogle Scholar
  15. Minkowycz WJ, Haji-Sheikh A, Vafai K (1999) Int. J. Heat Mass Tran. 42: 3373–3385.CrossRefzbMATHGoogle Scholar
  16. Nield DA, Bejan A (2006) Convection in porous media (3rd ed). Springer, New York.Google Scholar
  17. Qiu TQ, Tien CL (1993) J. Heat Tran. 115: 835–841.CrossRefGoogle Scholar
  18. Quintard M, Whitaker S (1993) Adv. Heat Tran. 23: 369–464.Google Scholar
  19. Tang DW, Araki N (1999) Int. J. Heat Mass Tran. 42: 855–860.CrossRefzbMATHGoogle Scholar
  20. Tzou DY (1992) J. Appl. Mech. 59: 862–866.CrossRefzbMATHGoogle Scholar
  21. Tzou DY (1995a) J. Heat Tran. 117: 8–16.CrossRefGoogle Scholar
  22. Tzou DY (1995b) AIAA J.Thermophys 9: 686–693.CrossRefGoogle Scholar
  23. Tzou DY (1997) Macro- to microscale heat transfer: the lagging behavior. Taylor & Francis, Washington.Google Scholar
  24. Tzou DY, Zhang YS (1995) Int. J. Engng. Sci. 33: 1449–1463.CrossRefzbMATHGoogle Scholar
  25. Vadasz JJ, Govender S, Vadász P (2005) Int. J. Heat Mass Tran. 48: 2673–2683.CrossRefGoogle Scholar
  26. Vadász P (2005a) J. Heat Tran. 127: 307–314.CrossRefGoogle Scholar
  27. Vadász P (2005b) Int. J. Heat Mass Tran. 48: 2822–2828.CrossRefGoogle Scholar
  28. Vadász P (2005c) Transport Porous Med. 59: 341–355.CrossRefGoogle Scholar
  29. Vadász P (2006a) Int. J. Heat Mass Tran. 49: 4886–4892.CrossRefzbMATHGoogle Scholar
  30. Vadász P (2006b) J. Heat Tran. 128: 465–477.CrossRefGoogle Scholar
  31. Vadász P (2007) Int. J. Heat Mass Tran. 50, 4131–4140.CrossRefzbMATHGoogle Scholar
  32. Wang LQ (1994) Int. J. Heat Mass Tran. 37: 2627–2634.CrossRefzbMATHGoogle Scholar
  33. Wang LQ (2000a) Int. J. Heat Mass Tran. 43: 365–373.CrossRefzbMATHGoogle Scholar
  34. Wang LQ (2000b) Transport Porous Med. 39: 1–24.CrossRefGoogle Scholar
  35. Wang LQ, Wei XH (2008) Int. J. Heat Mass Transfer 51: 1751–1756.CrossRefzbMATHGoogle Scholar
  36. Wang LQ, Xu MT (2002) Int. J. Heat Mass Tran. 45: 1165–1171.CrossRefzbMATHGoogle Scholar
  37. Wang LQ, Zhou XS (2000) Dual-phase-lagging heat-conduction equations. Shandong University Press, Jinan.Google Scholar
  38. Wang LQ, Zhou XS (2001) Dual-phase-lagging heat-conduction equations: problems and solutions. Shandong University Press, Jinan.Google Scholar
  39. Wang LQ, Xu MT, Zhou XS (2001) Int. J. Heat Mass Tran. 44: 1659–1669.CrossRefzbMATHGoogle Scholar
  40. Wang LQ, Zhou XS, Wei XH (2008) Heat Conduction: mathematical models and analytical solutions. Springer-Verlag, Berlin.Google Scholar
  41. Whitaker S (1999) The method of volume averaging. Kluwer, Dordrecht.Google Scholar
  42. Xu MT, Wang LQ (2002) Int. J. Heat Mass Tran. 45: 1055–1061.CrossRefzbMATHGoogle Scholar
  43. Xu MT, Wang LQ (2005) Int. J. Heat Mass Tran. 48: 5616–5624.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2008

Authors and Affiliations

  • Liqiu Wang
    • 1
  • Mingtian Xu
    • 2
  • Xiaohao Wei
    • 1
  1. 1.Department of Mechanical EngineeringThe University of Hong KongHong Kong
  2. 2.Institute of Thermal Science TechnologyShandong UniversityHong KongChina

Personalised recommendations