Advertisement

Polyhedral Oligomeric Silsesquioxane Dendrimers

  • Katherine J. Haxton
  • Russell E. Morris
Part of the Advances in Silicon Science book series (ADSS, volume 2)

Dendrimers have been prepared with a wide variety of core molecules since the first patents and publications in the early 1980s (see Chapter 1) [1–3]. The most common core molecules (e.g. ammonia, ethylenediamine, pentaerythritol) permit 2–4 branches although some molecules may give greater branch multiplicity. Polyhedral oligo-meric silsesquioxanes (POSS) allow eight branches to radiate from a silicon-oxygen core. Dendrimers based on POSS were first reported in 1993 and have resulted in many publications to date [4].

Siloxanes are molecules with the general formula [RSiOx/2] where R is an organic group or silicon species. Siloxanes may be discrete molecules, two-dimensional ladders or networks, or three-dimensional cages or polymers. The siloxane linkage, Si–O–Si is formed when different units join to form larger molecules. Siloxy groups [R3SiO1/2] are good terminal groups because they halt formation of larger siloxane networks, siloxane [R2SiO2/2] groups are ideal candidates for forming long chain-like molecules, while silsesquioxanes [RSiO3/2] and silicates [SiO4/2] are most commonly found in three-dimensional structures, both random polymers and oligomers, due to the number of siloxane linkages that can be created. In all cases, a large number of structures with a large number of functionalities have been reported [5]

Keywords

Terminal Group Magic Angle Spinning PAMAM Dendrimers Polyhedral Oligomeric Silsesquioxanes Tertiary Amine Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tomalia DA (1995) Sci Am 272: 62CrossRefGoogle Scholar
  2. 2.
    Denkewalter RG, Kolc JF, Lukasavage WJ (1981) US Pat 4,289,872Google Scholar
  3. 3.
    Denkewalter RG, Kolc JF, Lukasavage WJ (1983) US Pat 4,410,688Google Scholar
  4. 4.
    Bassindale AR, Gentle TE (1993) J Mater Chem 3: 1319CrossRefGoogle Scholar
  5. 5.
    Baney RH, Itoh M, Sakakibara A, Suzuki T (1995) Chem Rev 95: 1409CrossRefGoogle Scholar
  6. 6.
    Feher FJ, Newman DA, Walzer JF (1989) J Am Chem Soc 111: 1741CrossRefGoogle Scholar
  7. 7.
    Morris RE (2005) J Mater Chem 15: 931CrossRefGoogle Scholar
  8. 8.
    Harrison PG, Hall C (1997) Main Group Met Chem 20: 515Google Scholar
  9. 9.
    Harrison PG (1997) J Organomet Chem 542: 141CrossRefGoogle Scholar
  10. 10.
    Hoebbel D, Weber C, Schmidt H, Kruger RP (2002) J Sol-Gel Sci Technol 24: 121–129CrossRefGoogle Scholar
  11. 11.
    Auner N, Ziemer B, Herrschaft B, Ziche W, John P, Weis J (1999) Eur J Inorg Chem 1087–1094Google Scholar
  12. 12.
    Hanssen RWJM, Van Santen RA, Abbenhuis HCL (2004) Eur J Inorg Chem 4: 675–683CrossRefGoogle Scholar
  13. 13.
    Phillips SH, Haddad TS, Tomczak SJ (2004) Curr Opin Solid State Mater Sci 8: 21CrossRefGoogle Scholar
  14. 14.
    Li GZ, Wang LC, Ni HL, Pittman CU (2001) J Inorg Organomet Polym 11: 123CrossRefGoogle Scholar
  15. 15.
    Bolln C, Tsuchida A, Frey H, Mulhaupt R (1997) Chem Mater 9: 1475CrossRefGoogle Scholar
  16. 16.
    Agaskar PA (1991) Inorg Chem 30: 2707CrossRefGoogle Scholar
  17. 17.
    Frye CL, Collins WT (1970) J Am Chem Soc 92: 5586CrossRefGoogle Scholar
  18. 18.
    Bonhomme C, Toledano P, Maquet J, Livage J, Bonhommecoury L (1997) J Chem Soc Dalton Trans 1617–1626Google Scholar
  19. 19.
    Voronkov MG, Lavrentyev VI (1982) Top Curr Chem 102: 199Google Scholar
  20. 20.
    Lucke S, Stoppek-Langner K (1999) Appl Surf Sci 145: 713CrossRefGoogle Scholar
  21. 21.
    Lucke S, Stoppek-Langner K, Kuchinke J, Krebs B (1999) J Organomet Chem 584: 11CrossRefGoogle Scholar
  22. 22.
    Feher FJ, Wyndham KD (1998) Chem Commun 323Google Scholar
  23. 23.
    Gravel MC, Zhang C, Dinderman M, Laine RM (1999) Appl Organomet Chem 13: 329CrossRefGoogle Scholar
  24. 24.
    Laine RM (2005) J Mater Chem 15: 3725CrossRefGoogle Scholar
  25. 25.
    Scott DW (1946) J Am Chem Soc 68: 356CrossRefGoogle Scholar
  26. 26.
    Barry AJ, Daudt WH, Domicone JJ, Gilkey JW (1955) J Am Chem Soc 77: 4248CrossRefGoogle Scholar
  27. 27.
    Muller R (1959) J Prakt Chem 9: 71CrossRefGoogle Scholar
  28. 28.
    Agaskar PA, Klemperer WG (1995) Inorg Chim Acta 229: 355CrossRefGoogle Scholar
  29. 29.
    Nyman MD, Desu SB, Peng CH (1993) Chem Mater 5: 1636CrossRefGoogle Scholar
  30. 30.
    Feher FJ, Wyndham KD, Knauer DJ (1998) Chem Commun 2393–2394Google Scholar
  31. 31.
    Feher FJ, Wyndham KD, Soulivong D, Nguyen F (1999) J Chem Soc Dalton Trans 1491–1497Google Scholar
  32. 32.
    Richter I, Burschka C, Tacke R (2002) J Organomet Chem 646: 200CrossRefGoogle Scholar
  33. 33.
    Hasegawa I, Sakka S, Sugahara Y, Kuroda K, Kato C (1989) American Chemical Society Symposium Series, 398: 140, American Chemical Society, Washington, DCGoogle Scholar
  34. 34.
    Wiebcke M, Hoebbel D (1992) J Chem Soc Dalton Trans 2451Google Scholar
  35. 35.
    Pitsch I, Hoebbel D, Jancke H, Hiller W (1991) Z Anorg Allg Chem 596: 63CrossRefGoogle Scholar
  36. 36.
    Hoebbel D, Pitsch I, Heidemann D, Jancke H, Hiller W (1990) Z Anorg Allg Chem 583: 133CrossRefGoogle Scholar
  37. 37.
    Drylie EA, Andrews CD, Hearshaw MA, Jimenez-Rodriguez C, Slawin A, Cole-Hamilton DJ, Morris RE (2006) Polyhedron 25: 853CrossRefGoogle Scholar
  38. 38.
    Feher FJ, Soulivong D, Eklund AG, Wyndham KD (1997) Chem Commun 1185–1186Google Scholar
  39. 39.
    Lo MY, Ueno K, Tanabe H, Sellinger A (2006) Chem Rec 6: 157CrossRefGoogle Scholar
  40. 40.
    Day VW, Klemperer WG, Mainz VV, Millar DM (1985) J Am Chem Soc 107: 8262CrossRefGoogle Scholar
  41. 41.
    Hong B, Thoms TPS, Murfee HJ, Lebrun MJ (1997) Inorg Chem 36: 6146CrossRefGoogle Scholar
  42. 42.
    Murfee HJ, Thoms TPS, Greaves J, Hong B (2000) Inorg Chem 39: 5209CrossRefGoogle Scholar
  43. 43.
    Speier JL (1957) J Am Chem Soc 79: 974CrossRefGoogle Scholar
  44. 44.
    Karstedt BD (1973) US Patent 3,775,452Google Scholar
  45. 45.
    Dittmar U, Hendan BJ, Florke U, Marsmann HC (1995) J Organomet Chem 489: 185CrossRefGoogle Scholar
  46. 46.
    Lewis LN (1990) J Am Chem Soc 112: 5998CrossRefGoogle Scholar
  47. 47.
    Casado CM, Cuadrado I, Moran W, Alonso B, Barranco M, Losada J (1999) Appl Organomet Chem 13: 245CrossRefGoogle Scholar
  48. 48.
    Coupar PI, Jaffres PA, Morris RE (1999) J Chem Soc Dalton Trans 2183–2187Google Scholar
  49. 49.
    Jaffres PA, Morris RE (1998) J Chem Soc Dalton Trans 2767Google Scholar
  50. 50.
    Ropartz L, Foster DF, Morris RE, Slawin AMZ, Cole-Hamilton DJ (2002) J Chem Soc Dalton Trans 1997Google Scholar
  51. 51.
    Ropartz L, Haxton KJ, Foster DF, Morris RE, Slawin AMZ, Cole-Hamilton DJ (2002) J Chem Soc Dalton Trans 4323Google Scholar
  52. 52.
    Ropartz L, Morris RE, Foster DF, Cole-Hamilton DJ (2001) Chem Commun 361–362Google Scholar
  53. 53.
    Ropartz L, Morris RE, Foster DF, Cole-Hamilton DJ (2002) J Mol Catal A: Chem 182: 99CrossRefGoogle Scholar
  54. 54.
    Ropartz L, Morris RE, Schwarz GP, Foster DF, Cole-Hamilton DJ (2000) Inorg Chem Commun 3: 714CrossRefGoogle Scholar
  55. 55.
    Zhang XJ, Haxton KJ, Ropartz L, Cole-Hamilton DJ, Morris RE (2001) J Chem Soc Dalton Trans 3261–3268Google Scholar
  56. 56.
    Manson BW, Morrison JJ, Coupar PI, Jaffres PA, Morris RE (2001) J Chem Soc Dalton Trans 7: 1123–1127CrossRefGoogle Scholar
  57. 57.
    Naka K, Fujita M, Tanaka K, Chujo Y (2007) Langmuir 23: 9057CrossRefGoogle Scholar
  58. 58.
    Kaneshiro TL, Wang X, Lu Z-R (2007) Mol Pharmaceutics 4: 759CrossRefGoogle Scholar
  59. 59.
    Wada K, Watanabe N, Yamada K, Kondo T, Mitsudo T (2005) Chem Commun 1409: 95–97CrossRefGoogle Scholar
  60. 60.
    Gennes PGd, Hervet H (1983) J Phys Lett 44: 351CrossRefGoogle Scholar
  61. 61.
    Saez IM, Goodby JW, Richardson RM (2001) Chem Eur J 7: 2758CrossRefGoogle Scholar
  62. 62.
    Saez IM, Goodby JW (2001) J Mater Chem 11: 2845CrossRefGoogle Scholar
  63. 63.
    Saez IM, Goodby JW (1999) Liq Cryst 26: 1101CrossRefGoogle Scholar
  64. 64.
    Muller E, Edelmann FT (1999) Main Group Met Chem 22: 485Google Scholar
  65. 65.
    Auner N, Probst R, Hahn F, Herdtweck E (1993) J Organomet Chem 459: 25CrossRefGoogle Scholar
  66. 67.
    Dvornic PR, Hartmann-Thompson C, Keinath SE, Hill EJ (2004) Macromolecules 37: 7818CrossRefGoogle Scholar
  67. 68.
    Azinovic D, Cai J, Eggs C, Konig H, Marsmann HC, Veprek S (2002) J Lumin 97: 40CrossRefGoogle Scholar
  68. 69.
    Freemantle M (2000) Chem Eng News 78Google Scholar
  69. 70.
    Knapen JWJ, Vandermade AW, Dewilde JC, Vanleeuwen P, Wijkens P, Grove DM, Vankoten G (1994) Nature 372: 659CrossRefGoogle Scholar
  70. 71.
    Astruc D, Chardac F (2001) Chem Rev 101: 2991CrossRefGoogle Scholar
  71. 72.
    Oosterom GE, Reek JNH, Kamer PCJ, van Leeuwen P (2001) Angew Chem Int Ed 40: 1828CrossRefGoogle Scholar
  72. 73.
    Helms B, Frechet JMJ (2006) Adv Synth Catal 348: 1125CrossRefGoogle Scholar
  73. 74.
    Haxton KJ, Cole-Hamilton DJ, Morris RE (2004) Dalton Trans 1665–1669Google Scholar
  74. 75.
    Haxton KJ, Cole-Hamilton DJ, Morris RE (2007) Dalton Trans 3415–3420Google Scholar
  75. 76.
    Dierkes P, Van Leeuwen PWNM (1999) J Chem Soc Dalton Trans 1519–1529Google Scholar
  76. 77.
    Casey CP, Whiteker GT (1990) Isr. J. Chem. 30: 299Google Scholar
  77. 78.
    Casey CP, Whiteker GT, Melville MG, Petrovich LM, Gavney JA, Powell DR (1992) J Am Chem Soc 114: 5535CrossRefGoogle Scholar
  78. 79.
    Storrier GD, Takada K, Abruna HD (1999) Langmuir 15: 872CrossRefGoogle Scholar
  79. 80.
    Parekh HS (2007) Curr Pharm Design 13: 2837CrossRefGoogle Scholar
  80. 81.
    Xu M, Chen QR, Kumar D, Stass SA, Mixson AJ (1998) Mol Genet Metab 64: 193CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Authors and Affiliations

  • Katherine J. Haxton
    • 1
  • Russell E. Morris
    • 2
  1. 1.School of Physical and Geographical SciencesKeele UniversityStaffordshireUK
  2. 2.EaStChem School of ChemistryUniversity of St. AndrewsSt. AndrewsUK

Personalised recommendations