Advertisement

Hydrosilylation of Alkenes and Their Derivatives

  • Bogdan Marciniec
Part of the Advances In Silicon Science book series (ADSS, volume 1)

Abstract

Hydrosilylation of C═C bonds as a most versatile synthetic route to formation of Si—C bond initiated by free-radicals has been well-known for 60 years, while that catalysed by platinum (starting from Speier catalyst) and other TM complexes – for 50 years. Chapter 1 presents a comprehensive survey of literature on hydrosilylation of alkenes and their derivatives by molecular compounds containing Si—H bond, published in the last two decades. Dehydrogenative silylation, related to the above process, is also discussed. New hydrosilylation catalysts, predominantly homogeneous and immobilised late and early TM-complexes have been developed but also nucleophilic-electrophilic catalysts, metals and supported metals as well as radical initiators have been cited. These catalysts offer many convenient synthetic routes to molecular organosilicon reagents characterised by increased efficiency i.e. the yield and selectivity as well as turnover rate. The choice of catalyst determines the mechanism of catalysis, whose rational development for individual catalytic systems is extensively discussed.

Keywords

Rhodium Complex Reductive Elimination Allyl Chloride Early Transition Metal Late Transition Metal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Marciniec, J. Gulinski, W. Urbaniak, Z.W. Kornetka, Comprehensive Handbook on Hydrosilylation, B. Marciniec (ed) Pergamon Press, Oxford, 1992, p. 754.Google Scholar
  2. 2.
    I. Ojima, The Chemistry of Organic Silicon Compounds (Eds. S. Patai, Z. Rappoport), Wiley, Chichester, 1989, vol. 1, Chapter 25.Google Scholar
  3. 3.
    V.B. Pukhnarevich, E. Lukevics, L.T. Kopylova, M.G. Voronkov, in: E. Lukevics (ed) Perspectives of hydrosilylation, Riga, Latvia, 1992.Google Scholar
  4. 4.
    B. Marciniec, Hydrosilylation and related reactions of silicon compounds, in B. Cornils, W.A. Herrmann (eds), Applied Homogeneous Catalysis with Organometallic Compounds, VCH, Weinheim, 1996, Chapter 2.6.Google Scholar
  5. 5.
    I. Ojima, Z. Li, J. Zhu, Recent advances in hydrosilylation and related reactions, in: Z. Rappoport, Y. Apeloig (eds) The Chemistry of Organic Silicon Compounds, Wiley Chichester, 1998, vol. 2, Chapter 29.Google Scholar
  6. 6.
    J.A. Reichl, D.H. Berry, Recent progress in transition metal-catalyzed reaction on silicon, germanium and tin, Adv. Organomet. Chem., 1999, 43, 197–265.Google Scholar
  7. 7.
    M.A. Brook, Silicon in Organic, Organometallic and Polymer Chemistry, Wiley, New York, 2000. Google Scholar
  8. 8.
    B. Marciniec, Hydrosilylation and related reactions of silicon compounds, in: B. Cornils, W. Herrmann (eds), Applied Homogeneous Catalysis with Organometallic Compounds, 2nd Compl. Revised and Enlarged Edition, Wiley-VCH, Weinheim, 2002, vol. 1, Chapter 2.6.Google Scholar
  9. 9.
    B. Marciniec, Silicon Chemistry, 2002, 1, 155–175.Google Scholar
  10. 10.
    C. Chatgilialoglu, C. Ferreri, T. Gimisis, Tris(trimethylsilyl)silane inorganic synthesis, in: Z. Rappoport, Y. Apeloig (eds) The Chemistry of Organic Silicon Compounds, Wiley, Chichester, 1998, Chapter 25.Google Scholar
  11. 11.
    B.M. Trost, Z.T. Ball, Synthesis, 2005, 853–887.Google Scholar
  12. 12.
    B. Marciniec, Coord. Chem. Rev., 2005, 249, 2374–2390.Google Scholar
  13. 13.
    A.K. Roy, A Review of recent progress in catalysed homogeneous hydrosilation (hydrosilylation), Adv. Organomet. Chem., 2008, 55, 1–59.Google Scholar
  14. 14.
    B. Marciniec, J. Gulinski, H. Maciejewski, Hydrosilylation, in: I.T. Horvath (ed), Encyclopedia of Catalysis, Wiley, New York, 2003, vol. 4, pp. 107–152.Google Scholar
  15. 15.
    A.J. Chalk, J. F. Harrod, J. Am. Chem. Soc., 1965, 87, 16–21.Google Scholar
  16. 16.
    M.A. Schroeder, M.S. Wrighton, J .Organomet. Chem., 1977, 128, 345–358.Google Scholar
  17. 17.
    S. Sakaki, N. Mizoe, M. Sugimoto: Organometallics, 1998, 17, 2510–2523.Google Scholar
  18. 18.
    S. Sakaki, M. Ogawa, Y. Musashi, T. Arei, J. Am. Chem. Soc., 1994, 116, 7258–7265.Google Scholar
  19. 19.
    S. Sakaki, N. Mizoe, Y. Musashi, B. Biswas, M. Sugimoto, J. Phys. Chem., A.,1998, 102, 8027–8036.Google Scholar
  20. 20.
    S. Sakaki, N. Mizoe, M. Sugimoto, Y. Musashi, Coord. Chem. Revs., 1999, 190–192, 933–960.Google Scholar
  21. 21.
    S. Sakaki, N. Mizoe, Y. Musashi, B. Biswas, M. Sugimoto, J. Mol. Struct., (Theochem) 1999, 461–462, 533–546.Google Scholar
  22. 22.
    G. Giorgi, F. De Angelis, N. Re, A. Sgamellotti, J. Mol. Struct., 2003, 623, 277–288.Google Scholar
  23. 23.
    C.A. Tsipis, C.E. Kefalidis, J. Organomet. Chem., 2007, 692, 5245–5255.Google Scholar
  24. 24.
    C.A. Tsipis, C.E. Kefalidis, Organometallics, 2006, 25, 1696–1706.Google Scholar
  25. 25.
    S. Sakaki, M. Sumimoto, M. Fukuhara, M. Sugimoto, H. Fujimoto, S. Matsuzaki, Organometallics, 2002, 21, 3788–3802.Google Scholar
  26. 26.
    B. Marciniec, New J. Chem., 1997, 21, 815–824.Google Scholar
  27. 27.
    B. Marciniec, Appl. Organomet. Chem., 2000, 14, 527–538.Google Scholar
  28. 28.
    J.L. Speier, J.A. Webster, G.H. Barnes, J. Am. Chem. Soc., 1957, 79, 974–979.Google Scholar
  29. 29.
    V.B. Pukhnarevich, E. Lukevics, L.T. Kopylova, M.G. Voronkov, in: E. Lukevics (ed) Perspectives of Hydrosilylation, Riga, Latvia, 1992.Google Scholar
  30. 30.
    US 3 775 452 1973.Google Scholar
  31. 31.
    J. Gulinski, J. Klosin, B. Marciniec, Appl. Organomet. Chem., 1994, 8, 409–414.Google Scholar
  32. 32.
    X. Cogueret, G. Wegne, Organometallic, 1991, 10, 3139–3145.Google Scholar
  33. 33.
    G. Friedmann, Y. Shreim, J. Brossas, Eur. Polym. J., 1992, 28, 271–273; JP 91 157 138 1991; DE 3 906 514 1989.Google Scholar
  34. 34.
    N.K. Skvortsov, A.F. Trofimov, K.E. Timov, V.N. Spevak, V.V. Vasil’ev, Zh. Obshch. Khim.,1991, 61, 574–581.Google Scholar
  35. 35.
    US 6 166238 2000.Google Scholar
  36. 36.
    P. Steffanut, J.A. Osborn, A. DeCian, J. Fisher, Chem. Eur. J., 1998, 4, 2008–2017.Google Scholar
  37. 37.
    L.N. Lewis, C.A. Sumpter, J. Mol. Catal., 1996, 104, 293–297.Google Scholar
  38. 38.
    L.N. Lewis, C.A. Sumpter, J. Stein, J. Inorg. Organomet. Chem., 1996, 6, 123–145.Google Scholar
  39. 39.
    L.N. Lewis, C.A. Sumpter, M. Davis, J. Inorg. Organomet. Chem., 1995, 5, 377–390.Google Scholar
  40. 40.
    US 5 486 637 1996.Google Scholar
  41. 41.
    US 5 567 848 1996.Google Scholar
  42. 42.
    US 5 756 795 1998.Google Scholar
  43. 43.
    A. Hopf, K.H. Dotz, J. Mol. Catal. A: Chem., 2000, 164, 191–194.Google Scholar
  44. 44.
    EP 856 517 1998.Google Scholar
  45. 45.
    US 5 359 113 1994.Google Scholar
  46. 46.
    M.F. Lappert, F.P.A. Scott, J. Organomet. Chem., 1995, 492, C11–C13.Google Scholar
  47. 47.
    L.N. Lewis, R.E. Colborn, H. Grade, G.L. Bryant, Jr, C.A. Sumpter, R.A. Scott, Organometallics, 1995, 14, 2202–2213.Google Scholar
  48. 48.
    EP 533 170 1992.Google Scholar
  49. 49.
    H. Aneethe, W. Wu, J.G. Verkade, Organometallics, 2005, 24, 2590–2496.Google Scholar
  50. 50.
    A. Hopf, K.H. Dotz, J. Mol. Catal. A: Chem., 2000, 164, 191–194.Google Scholar
  51. 51.
    O. Buisine, G. Berthon-Gelloz, J-F Brière, S. Stérin, G. Mignani, P. Branlard, B. Tinant, J.-P. Declercq, I. E. Marko, Chem. Commun., 2005, 3856–3859.Google Scholar
  52. 52.
    G. Berthon-Gelloz, O. Buisine, J.-F. Brière, G. Michaud, J. Organomet. Chem., 2005, 690, 6156–6168.Google Scholar
  53. 53.
    I.E. Marko, S. Sterin, O. Buisine, B. Berthon, G. Michaud, B. Tinant, J.P. Declerq, Adv. Synth. Catal., 2004, 346, 1429–1434.Google Scholar
  54. 54.
    I.E. Marko, S. Sterin, G. Mignani, P. Branlard, B. Tinant, J.P. Declercq, Science, 2002, 298, 204–206.Google Scholar
  55. 55.
    G. De Bo, G. Berthon-Gelloz, B. Tinant, I.E. Marko, Organometallics, 2006, 25, 1881–1890.Google Scholar
  56. 56.
    Y. Chen, R. Sheng, Y. Liu, Chem. Res. Chin. Univ., 1994 10, 338–340.Google Scholar
  57. 57.
    [SC 55] L.I. Kopylova, C.E. Korostova, W.B. Pukhnarevich, M.G. Voronkov, Zh. Obsch. Khim., 1996, 66, 86–88.Google Scholar
  58. 58.
    US 6 087 521 2000.Google Scholar
  59. 59.
    N.B. Bespalova, M.A. Bovina, A.I. Rebrov, V.L. Khodzhaeva, O.B. Semenov, Russ. Chem. Bull., 1997, 46, 1697–1699.Google Scholar
  60. 60.
    L. Sacarescu, N. Luchian, M. Marcu, R. Ardeleanu, G. Sacarescu, Iran. J. Polym. Sci. Tech., 1995, 4, 294–298.Google Scholar
  61. 61.
    M. Tanaka, Y. Uchimaru, H.J. Lautenschlager, J. Organomet. Chem., 1992, 428, 1–12.Google Scholar
  62. 62.
    J.W. Sprengers, M.J. Mars, M.A. Duin, K.J. Cavell, C.J. Elsevier, J. Organomet. Chem., 2003, 679, 149–152.Google Scholar
  63. 63.
    J.W. Sprengers, M.J.Agerbeek, C.J.Elsevier, H. Kooijman, A.L. Spek Organometallics, 2004, 23, 3117–3125.Google Scholar
  64. 64.
    J.W. Sprengers, M. De Greef, M.A. Duin, C.J. Elsevier, Eur. J. Inorg. Chem., 2003, 3811–3819.Google Scholar
  65. 65.
    C.R. Baar, L.P. Carbray, M.C. Jennings, R.J. Puddephatt, J. Am. Chem. Soc., 2000, 122, 176–177.Google Scholar
  66. 66.
    N.D. Jones, G. Lin, R.A. Gossage, R. McDonald, R.G. Cavell, Organometallics, 2003, 22, 2832–2841.Google Scholar
  67. 67.
    C. Huber, A. Kokil, W.R. Caseri, C. Weder, Organometallics, 2002, 21, 3817–3818.Google Scholar
  68. 68.
    Y. Yamamoto, T. Ohno, K. Itoh, Organometallics, 2003, 22, 2267–2272.Google Scholar
  69. 69.
    X. Wang, H. Chakrapani, J.W. Madine, M.A. Keyerleber, R.A. Widenhoefer, J. Org. Chem., 2002, 67, 2778–2788.Google Scholar
  70. 70.
    J.W. Madine, X. Wang, R. Widenhoefer, Org. Lett., 2001, 3, 385–388.Google Scholar
  71. 71.
    B.M. Wile, R.J. Burford, R. McDonald, M.J. Ferguson, M. Stradiotto, Organometallics, 2006, 25, 1028–1035.Google Scholar
  72. 72.
    J. Liedtke, S. Loss, G. Alcaraz, V. Gramlich, H. Grutzmacher, Angew. Chem. Int. Ed., 1999, 38, 1623–1626.Google Scholar
  73. 73.
    J. Liedtke, S. Loss, C. Widauer, H. Grutzmacher, Tetrahedron, 2000, 56, 143–156.Google Scholar
  74. 74.
    L.-B. Han, C.-Q. Zhao, S. Onozawa, M. Goto, M. Tanaka, J. Am. Chem. Soc., 2002, 124, 3842–3843.Google Scholar
  75. 75.
    A.K. Roy, R.B. Taylor, J. Am. Chem. Soc., 2002, 124, 9510–9524.Google Scholar
  76. 76.
    F. Ozawa, J. Organomet. Chem., 2000, 611, 332–342.Google Scholar
  77. 77.
    M.N. Jagadeesh, W. Thiel, J. Köhler, A. Fen, Organometallics, 2002, 21, 2076–2087.Google Scholar
  78. 78.
    R.J. Cross, M.F. Davidson, J. Chem. Soc. Dalton Trans., 1986, 1987–1992.Google Scholar
  79. 79.
    DE 19 938 338 1999.Google Scholar
  80. 80.
    DE 19 847 097 2000.Google Scholar
  81. 81.
    EP 994 159 1998.Google Scholar
  82. 82.
    U. Belluco, R. Bertani, R.A. Michelin, M. Mozzon, J. Organomet. Chem., 2000, 600, 37–55.Google Scholar
  83. 83.
    N. Sabourault, G. Mignani, A. Wagner, C. Mioskowski, Org. Lett., 2003, 12, 2117–2119.Google Scholar
  84. 84.
    C.J. Zhou, R.F. Guan, S.Y. Feng, Eur. Polym .J., 2004, 40, 165–170.Google Scholar
  85. 85.
    A. Marinetti, Tetrahedron Lett., 1994, 35, 5861–5864.Google Scholar
  86. 86.
    J. Gulinski, B.R. James, J. Mol. Catal., 1992, 72, 167–171.Google Scholar
  87. 87.
    A.M. LaPointe, F.C. Rix, M. Brookhart, J. Am. Chem. Soc., 1997, 119, 906–917.Google Scholar
  88. 88.
    Y. Uozumi, H. Tsuji, T. Hayashi, J. Org. Chem., 1998, 63, 6137–6140.Google Scholar
  89. 89.
    R.A. Widenhoefer, Acc. Chem. Res., 2002, 35, 905–913.Google Scholar
  90. 90.
    X. Wang, S.Z. Stankovich, R.A. Widenhoefer, Organometallics, 2002, 21, 901–905.Google Scholar
  91. 91.
    X. Wang, H. Chakrapani, C.N. Stengone, R.A. Widenhoefer, J. Org. Chem., 2001, 66, 1755–1760.Google Scholar
  92. 92.
    N.S. Perch, R.A. Widenhoefer, J. Am. Chem. Soc., 2004, 126, 6332–6346.Google Scholar
  93. 93.
    C.N. Stengone, R.S. Widenhoefer, Tetrahedron Lett., 1999, 40, 1451–1454.Google Scholar
  94. 94.
    A. Widenhoefer, M.A. DeCarli, J. Am. Chem. Soc., 1998, 120, 805–806.Google Scholar
  95. 95.
    A.N. Reznikov, N.K. Skvortsov, Russ. J. Gen. Chem., 2004, 74, 1520–1523.Google Scholar
  96. 96.
    D. Motoda, H. Shimokubo, K. Oshima, Synlett, 2002, 1529–1532.Google Scholar
  97. 97.
    Krause, G. Cestaric, K.J. Hack, K. Seevogel, W. Storm, K.R. Porschke, J. Am. Chem. Soc., 1999, 121, 9807–9823.Google Scholar
  98. 98.
    T. Hiyama, T. Kasumoto. in Comprehensive Organic Synthesis (Ed. B.M. Trost), Pergamon Press, Oxford, 1991, p. 763.Google Scholar
  99. 99.
    Y. Kiso, M. Kumada, K. Maeda, K. Sumitami, K. Tamao, J. Organomet. Chem., 1973, 50, 311–318.Google Scholar
  100. 100.
    B. Marciniec, H. Maciejewski, J. Mirecki: J. Organomet. Chem., 1991, 418, 61–67.Google Scholar
  101. 101.
    B. Marciniec, H. Maciejewski, J. Organomet. Chem., 1993, 454, 45–50.Google Scholar
  102. 102.
    B. Marciniec, H. Maciejewski, U. Rosenthal, J. Organomet. Chem., 1994, 484, 147–151.Google Scholar
  103. 103.
    B. Marciniec, H. Maciejewski, J. Guliński, B. Maciejewska, W. Duczmal, J. Organomet. Chem., 1996, 521, 245–251.Google Scholar
  104. 104.
    B. Marciniec, H. Maciejewski, I. Kownacki, J. Mol. Catal. A., 1998, 135, 223–231.Google Scholar
  105. 105.
    B. Marciniec, H. Maciejewski, I. Kownacki, J. Organomet. Chem., 2000, 597, 175–181.Google Scholar
  106. 106.
    PL 188 754 2000.Google Scholar
  107. 107.
    N.K. Skvortsov, V.K. Bel’skii, H. Maciejewski, J. Gulinski, Russ. J. Gen. Chem., 2003, 73, 66–69.Google Scholar
  108. 108.
    A. Tillack, S. Pulst, W. Baumann, H. Baudisch, K. Kortus, U. Rosendahl, J. Organomet. Chem., 1997, 532, 117–123.Google Scholar
  109. 109.
    F.-G. Fontaine, R.-V. Nguyen, D. Zargarian, Can. J. Chem., 2003, 81, 1299–1306.Google Scholar
  110. 110.
    I. Hyder, M. Jimenez-Tenorio, M.C. Puerta, P. Valerga, J. Chem. Soc. Dalton Trans., 2007, 3000–3009.Google Scholar
  111. 111.
    Y. Chen, C. Sui-Seng, S. Boucher, D. Zargarian, Organometallics, 2005, 24, 149–155.Google Scholar
  112. 112.
    N.K. Skvortsov, Rhodium Express, No 4, May 1994, St. Petersburg.Google Scholar
  113. 113.
    R. Takeuchi, N. Tanouchi, J. Chem. Soc. Chem. Commun., 1993, 1319–1320.Google Scholar
  114. 114.
    R. Takeuchi, N. Tanouchi, J. Chem. Soc. Perkin Trans., 1994, 1, 2909–2913.Google Scholar
  115. 115.
    P. Hofmann, C. Meier, W. Hiller, M. Heckel, J. Ruder, M.V. Schmidt, J. Organomet. Chem., 1995,490, 51–70.Google Scholar
  116. 116.
    A.G. Bessmertnykh, K.A. Blinov, Y.K. Grishin, N.A. Donskaya, I.P. Beletskaya, Tetrahedron Lett., 1995, 43, 7901–7904.Google Scholar
  117. 117.
    G.W. Hewitt, J.J. Somers, S. Sieburth, Tetrahedron Lett., 2000, 41, 10175–10179.Google Scholar
  118. 118.
    M.D. Fryzuk, L. Rosenberg, S.J. Retting, Organometallics, 1996, 15, 2871–2880.Google Scholar
  119. 119.
    M.P. Doyle, G.A. Devore, A.O. Nefedov, K.G. High, Organometallics, 1992, 11, 549–555.Google Scholar
  120. 120.
    F. Kakiuchi, K. Nogami, N. Chatani, Y. Seki, S. Murai, Organometallics, 1993, 12, 4748–4750.Google Scholar
  121. 121.
    R. Skoda-Foldes, L. Kollar, B. Heil, J. Organomet. Chem., 1991, 408, 297–304.Google Scholar
  122. 122.
    Y. Kawanami, K. Yamamoto, Bull. Chem. Soc. Jpn., 1996, 69, 1117–1124.Google Scholar
  123. 123.
    S.B. Duckett, R.N. Perutz, Organometallics, 1992, 11, 90–98 .Google Scholar
  124. 124.
    N.A. Donskaya, N.M. Yurjeva, I.P. Beletskaya, Zh. Obshch. Khim., 1997, 33, 962–963.Google Scholar
  125. 125.
    I. Ojima, R.J. Donovan, N. Clos, Organometallics, 1991 , 10, 2606–2610.Google Scholar
  126. 126.
    K.H. Park, S.Y. Kim, S.U. Son, Y.K. Chung, Eur. J. Org. Chem., 2003, 4341–4345.Google Scholar
  127. 127.
    M. Poyatos, E. Mas-Marza, J.A. Mata, M. Sanau, E. Peris, Eur. J. Inorg. Chem., 2003, 1215–1221.Google Scholar
  128. 128.
    J.Y. Zeng, M.-H. Hsieh, H.M. Lee, J. Organomet. Chem., 2005, 690, 5662–5671.Google Scholar
  129. 129.
    M.V. Jimenes, J.J. Perez-Torrente, M.I. Bartolome, V. Gierz, F.J. Lahoz, L.A. Oro, Organometallics, 2008, 27, 224–234.Google Scholar
  130. 130.
    G.T.S. Andavan, E.B. Bauer, C.S. Letko, T.K. Hollis, F.S. Tham, J. Organomet. Chem., 2005, 690, 5938–5947.Google Scholar
  131. 131.
    E. Mas-Marza, M. Sanau, E. Peris, Inorg. Chem., 2005, 44, 9961–9967.Google Scholar
  132. 132.
    M. Viciano, E. Mas-Marza, M. Sanau, E. Peris, Organometallics, 2006, 25, 3063–3069.Google Scholar
  133. 133.
    K.D. Hesp, D. Wechsler, J. Cipot, A. Myers, R. McDonald, M.J. Ferguson, G. Schatte, M. Stradiotto, Organometallics, 2007, 26, 5430–5437.Google Scholar
  134. 134.
    D. Wechsler, A. Myers, R. McDonald, M.J. Ferguson, M. Stradiotto, Inorg., Chem., 2006, 45, 4562–4570.Google Scholar
  135. 135.
    M. Stradiotto, J. Cipot, R. McDonald, J. Am. Chem. Soc., 2003, 125, 5618–5619.Google Scholar
  136. 136.
    C. Coperet, M. Chabanas, R. Petroff Saint-Arroman, J.-M. Basset, Angew. Chem., Int. Ed., 2003, 42, 156–181.Google Scholar
  137. 137.
    F.J. Feher, T.A. Budzichowski, Polyhedron, 1995, 14, 3239–3253.Google Scholar
  138. 138.
    B. Marciniec, H. Maciejewski, Coord. Chem. Rev., 2001, 223, 301–335.Google Scholar
  139. 139.
    P.T. Wolczanski, Polyhedron, 1995, 14, 3335–3362.Google Scholar
  140. 140.
    B. Marciniec, I. Kownacki, M. Kubicki, P. Krzyzanowski, E. Walczuk, P. Blazejewska-Chadyniak, Late transition metal (Co, Rh, Ir) – siloxide somplexes – synthesis structure and application to catalysis, in: C.G. Screttas, B.R. Steele (eds),Perspectives in Organometallic Chemistry, RSC Cambridge, 2003, pp. 253–264.Google Scholar
  141. 141.
    B. Marciniec, Catalysis by late transition metal-siloxide complexes, in: A. Trzeciak (ed), Education in Advanced Chemistry, Perspectives of Coordination Chemistry, Wyd. Uniw. Wroclawskiego, 2005, vol. 9, 195–214.Google Scholar
  142. 142.
    B. Marciniec, P. Krzyżanowski, E. Walczuk-Gusciora, W. Duczmal, J. Mol. Catal. A: Chem. 1999, 144, 263–271.Google Scholar
  143. 143.
    Pol. Pat. Appl. 368 485.Google Scholar
  144. 144.
    B. Marciniec, E. Walczuk, P. Blazejewska-Chadyniak, M. Kujawa-Welten, S. Krompiec, Catalytic activity of rhodium-siloxide complexes in Hydrosilylation of allyl ethers and allyl esters, in: N. Auner, J. Weis (eds), Organosilicon Chemistry V – From Molecules to Materials, Verlag Chemie, 2003, 363–374.Google Scholar
  145. 145.
    PL 194 667 2003.Google Scholar
  146. 146.
    B. Marciniec, P. Blazejewska-Chadyniak, M. Kubicki, Can. J. Chem., 2003, 81, 1292–1298.Google Scholar
  147. 147.
    B. Marciniec, H. Maciejewski, K. Szubert, M. Kurdykowska, Chem. Month., 2006, 137, 605–611; Pol. Pat. Appl. 380736; Pol. Pat. Appl. 380737.Google Scholar
  148. 148.
    R.S. Tanke, R.H. Crabtree, J. Am. Chem. Soc., 1990, 112, 7984–7989.Google Scholar
  149. 149.
    R.S. Tanke, R.H. Crabtree, Organometallics, 1991, 10, 415–418.Google Scholar
  150. 150.
    M.J. Hostetler, M.D. Butts, R.G. Bergman, Organometallics, 1993, 12, 65–75.Google Scholar
  151. 151.
    J. Cipot, M.J. Fergusson, M. Straditto, Inorg. Chim. Acta, 2006, 359, 2780–2785.Google Scholar
  152. 152.
    J. Cipot, M.J. Ferguson, G. Shatte, M. Straditto, Organometallics, 2007, 26, 594–608.Google Scholar
  153. 153.
    US 4658050 1987.Google Scholar
  154. 154.
    EP 0709392 1996.Google Scholar
  155. 155.
    JP 2003 096086 2003.Google Scholar
  156. 156.
    JP 1993 270278 1995, EP 2001 030 4327 2001.Google Scholar
  157. 157.
    DE 102004 052 424 2006.Google Scholar
  158. 158.
    N. Chatani, T. Kodama, Y. Kajikawe, H. Murakami, F. Kakiuchi, S. Ikeda, S. Murai: Chem. Lett., 2000, 29, 14–15.Google Scholar
  159. 159.
    M. Isobe, R. Nishizawa, T. Nishikawa, K. Yoza, Tetrahedron Lett., 1999 , 40, 6927–6932.Google Scholar
  160. 160.
    N.J. Archer, R.N. Haszeldine, R.V. Parish, J. Chem. Soc. Dalton Trans., 1979, 695–702.Google Scholar
  161. 161.
    M. Brookhart, B.E. Grant, J. Amer. Chem. Soc., 1993, 115, 2151–2156.Google Scholar
  162. 162.
    S. Tojo, M. Isobe, Tetrahedron Lett., 2005, 46, 381–384.Google Scholar
  163. 163.
    N.N. Sidamonidze, L.K. Janiashvili, R.O. Vardiashvili, M.O. Isakadze, Chem. Heterocyc. Compds, 2005, 41, 1534–1536.Google Scholar
  164. 164.
    P.B. Glaser, T. Don Tilley, J. Am. Chem. Soc., 2003, 125, 13640–13641.Google Scholar
  165. 165.
    C. Beddie, M.B. Hall, J. Am. Chem. Soc., 2004, 126, 13564–13565.Google Scholar
  166. 166.
    C. Beddie, M.B. Hall, J. Phys. Chem., 2006, 110, 1416–1425.Google Scholar
  167. 167.
    U. Bohme, J. Organomet. Chem., 2006, 691, 4400–4410.Google Scholar
  168. 168.
    T. Tuttle, D. Wang, W. Thiel, J. Kohler, M. Hofmann, J. Weis, J. Organomet. Chem., 2007, 692, 2282–2290.Google Scholar
  169. 169.
    M.A. Rankin, D.F. MacLean, G. Schatte, R. McDonald, M. Stradiotto, J. Am. Chem. Soc., 2007, 129, 15855–15864.Google Scholar
  170. 170.
    H.S. Hilal, S. Khalaf, W. Jondi, J. Organomet. Chem., 1993, 452, 167–173.Google Scholar
  171. 171.
    M. Tanaka, T. Hayashi, Z.-Y. Mi, J. Mol. Catal., 1993, 81, 207–214.Google Scholar
  172. 172.
    US 4927953 1990.Google Scholar
  173. 173.
    N.A. Esteruelas, J. Herrero, L.A. Oro, Organometallics, 1993, 12, 2377–2379.Google Scholar
  174. 174.
    Y. Maruyama, K. Yamamura, I. Nakayama, K. Yoshiuchi, F. Ozawa, J. Am. Chem. Soc., 1998,120, 1421–1429.Google Scholar
  175. 175.
    Y. Maruyama, K. Yoshiuchi, F. Ozawa: J. Organomet. Chem., 2000, 609, 130–136.Google Scholar
  176. 176.
    N.L. Christ, S. Sabo-Etienn, B. Chaudret, Organometallics, 1995, 14, 1082–1084.Google Scholar
  177. 177.
    F. Delpech, J. Mansas, H. Leuser, S. Sabo-Etienne, B. Chaudret, Organometallics, 2000, 19, 5750–5757.Google Scholar
  178. 178.
    L.V. He, J-Ch. Choi, T. Sakakura, Tetrahedron Lett., 2001, 42, 2169–2171.Google Scholar
  179. 179.
    F. Kagiuchi, Y. Tanaka, N. Chatani, S. Murai, J. Organomet. Chem., 1993, 456, 45–47.Google Scholar
  180. 180.
    S.C. Bart, E. Lobkovsky, P.J. Chirik, J. Am. Chem. Soc., 2004, 126, 13794–13807.Google Scholar
  181. 181.
    A.M. Arche, M.W. Bouwkamp, M.-P. Cortez, E. Lobkovsky, P.J. Chirik, Organometallics, 2006, 25, 4269–4278.Google Scholar
  182. 182.
    T.I. Gountchev, T. Don Tilley, Organometallics, 1999, 18, 5661–5667.Google Scholar
  183. 183.
    M.R. Kesti, R.M. Waymouth, Organometallics, 1992, 11, 1095–1103.Google Scholar
  184. 184.
    J.Y. Corey, X.-H. Zhu, Organometallics, 1992, 11, 672–683.Google Scholar
  185. 185.
    G.A. Molander, W.H. Retsch, Organometallics, 1995, 14, 4570–4575.Google Scholar
  186. 186.
    G.A. Molander, J. Winterfeld, J. Organomet. Chem., 1996, 524, 275–279.Google Scholar
  187. 187.
    T. Sakakura, H.-J. Lautenschlager, M. Tanaka, J. Chem., Soc. Chem., Commun. 1991, 40–41.Google Scholar
  188. 188.
    G.A. Molander, E.D. Dow, B.C. Noll, Organometallics, 1998, 17, 3754–3758.Google Scholar
  189. 189.
    H. Schumann, M.R. Keitsch, J. Wintelfild, S. Muhle, G.A. Molander, J. Organomet. Chem.,1998, 559, 181–190.Google Scholar
  190. 190.
    P.F. Fu, L. Brand, T.J. Marks, J. Am. Chem. Soc., 1995, 117, 7157–7168.Google Scholar
  191. 191.
    T. Takahashi, M. Hasegawa, N. Suzuki, M. Saburi, C. J. Rousset, P. E. Fanwick, E. Negishi, J. Am. Chem. Soc., 1991, 113, 8564–8566.Google Scholar
  192. 192.
    US 6 072 085 2000. Google Scholar
  193. 193.
    T. Takahashi, M. Hasegawa, N. Suzuki, M. Saburi, C.J. Rousset, P.E. Fanwick, E.-I. Negishi, J. Am. Chem. Soc., 1991, 113, 8564–8566.Google Scholar
  194. 194.
    Y. Ura, R. Hara, T. Takahashi, Chem. Lett., 1998, 195–196.Google Scholar
  195. 195.
    S. Sakaki, T. Takayama, M. Sumimoto, M. Sugimoto, J. Am. Chem. Soc., 2004, 126, 3332–3348.Google Scholar
  196. 196.
    Y. Ura, G. Gao, F. Bao, M. Ogasawara, T. Takahashi, Organometallics, 2004, 23, 4804–4806.Google Scholar
  197. 197.
    B.M. Bode, P.N. Day, M.S. Gordon, J. Am. Chem. Soc., 1998, 120, 1552–1555Google Scholar
  198. 198.
    B.M. Bode, M.S. Gordon: Theor. Chem. Acc., 1999, 102, 366–376.Google Scholar
  199. 199.
    L. Bareille, S. Becht, J.L. Cui, P. Le Gendre, C. Moise, Organometallics, 2005, 24, 5802–5806.Google Scholar
  200. 200.
    T. Takahashi, F. Bao, G. Gao, M. Ogasawara, Org. Lett., 2003, 5, 3479–3481.Google Scholar
  201. 201.
    W.-G. Zhao, R. Hua, Eur. J. Org. Chem., 2006, 5495–5498.Google Scholar
  202. 202.
    G.A. Molander, J.A. Romero, Chem. Rev., 2002, 102, 2161–2185.Google Scholar
  203. 203.
    I.P. Beletskaya, A.Z. Voskoboinikov, I.N. Parshina, G.K.-I. Magomedov, Izv. Akad. Nauk SSR, Ser. Khim., 1990, 693–694.Google Scholar
  204. 204.
    G.A. Molander, M. Julius, J. Org. Chem., 1992, 57, 6347–6351.Google Scholar
  205. 205.
    G.A. Molander, E.E. Knight, J. Org. Chem., 1998, 63, 7009–7012.Google Scholar
  206. 206.
    A.Z. Voskoboynikov, A.K. Shestakova, I.P. Beletskaya, Organometallics, 2001, 20, 2794–2801.Google Scholar
  207. 207.
    A.A. Trifonov, Organometallics, 2001, 20, 4869–4874.Google Scholar
  208. 208.
    D. Robert, A.A. Trifonov, P. Voth, J. Okuda, J. Organomet. Chem., 2006, 691, 4393–4399.Google Scholar
  209. 209.
    M. Rastatter, A. Zulys, P.W. Roesky, Chem. Commun., 2006, 874–876.Google Scholar
  210. 210.
    Z. Hou, Y. Zhang, O. Tardif, Y. Wakatsuki, J. Am. Chem. Soc., 2001, 123, 9216–9217.Google Scholar
  211. 211.
    Y. Horino, T. Livinhouse, Organometallics, 2004, 23, 12–14.Google Scholar
  212. 212.
    K. Takaki, K. Sonoda, T. Kousaka, G. Koshoji, T. Shishido, K. Takehira, Tetrahedron Lett., 2001, 42, 9211–9214.Google Scholar
  213. 213.
    A.A. Trifonov, T.S. Spaniol, J. Okuda, Dalton Trans., 2004, 2245–2250.Google Scholar
  214. 214.
    A.K. Dash, I. Gourevich, J.Q. Wang, J. Wang, M. Kapon, M.S. Eisen, Organometallics, 2001, 20, 5084–5104.Google Scholar
  215. 215.
    E. Barnea, M.S. Eisen, Coord. Chem. Rev., 2006, 250, 855–899.Google Scholar
  216. 216.
    W. Abdelqader, D. Chmielewski, F.-W. Grevels, S. Ozkar, N.B. Peynircioglu, Organometallics, 1996, 15, 604–614.Google Scholar
  217. 217.
    S. Ozkar, M. Akhmedov, C. Katran, J. Organomet. Chem., 1997, 533, 103–108.Google Scholar
  218. 218.
    EP 278 863 1988.Google Scholar
  219. 219.
    F.D. Lewis, G.D. Salvi, Inorg. Chem., 1995, 34, 3182–3189.Google Scholar
  220. 220.
    F. Wang, X.Wu, A.A. Pinkerton, P. Kumaradhas, D.C. Neckers, Inorg. Chem., 2001, 40, 6000–6003.Google Scholar
  221. 221.
    D.A. Vekki, N.K. Skvortsov, Russ. J. Gen. Chem., 2004, 74, 197–206.Google Scholar
  222. 222.
    L.D. Boardman, Organometallics, 1992, 11, 4194–4201.Google Scholar
  223. 223.
    US 5 169 727 1992.Google Scholar
  224. 224.
    US 6 127 446 2000.Google Scholar
  225. 225.
    T. Lippert, J. Dauth, B. Deubzer, J. Weis, A. Wokaun, Radiat. Phys. Chem., 1996, 47, 889–897.Google Scholar
  226. 226.
    B. Marciniec, W. Duczmal, E. Sliwinska, J. Organomet. Chem., 1990, 385, 319–327.Google Scholar
  227. 227.
    F.R. Hartley, Supported Metal Complexes, D. Reidel Publ. Co, Dordrecht, 1985.Google Scholar
  228. 228.
    R. Drake, R. Dunn, D. C. Sherrington, S. J. Thomson., J. Mol. Catal., 2001, 177, 49–69.Google Scholar
  229. 229.
    R. Drake, R. Dunn, D.C. Sherrington, S.J. Thomson.,Chem. Commun., 2000, 1931–1932.Google Scholar
  230. 230.
    Z.W. Michalska, K. Strzelec, J.W. Sobczak, J. Mol. Catal., 2000, 156, 91–102.Google Scholar
  231. 231.
    R. Drake, D.C. Sherrington, S.J. Thomson, React. Funct. Polym., 2004, 60, 65–75.Google Scholar
  232. 232.
    R.M. Bronstein, Y.A. Kabachii, M.V. Seregina, O.A. Platonova, D.M. Chernyshov, P.M. Valetsky, Polym. Bull., 1998, 40, 173–180.Google Scholar
  233. 233.
    Z.M. Michalska, B. Ostaszewski, K. Strzelec, J. Organomet. Chem., 1995, 496, 19–26.Google Scholar
  234. 234.
    Z.M. Michalska, K. Strzelec, J. Mol. Catal. A: Chem., 2001, 177, 89–104.Google Scholar
  235. 235.
    G. Liu, B. Huang, M. Cai, React. Funct. Polym., 2007, 67, 294–298.Google Scholar
  236. 236.
    G. Liu, M. Cai, J. Mol. Catal. A: Chem., 258, 2006, 257–260.Google Scholar
  237. 237.
    Q.J. Miao, Z.-P.Fang, G.P.Cai, Catal. Commun.,2003, 4, 637–639.Google Scholar
  238. 238.
    Z.M. Michalska, L. Rogalski, K. Rozga-Wijas, J. Chojnowski, W. Fortuniak, M. Scibiorek, J. Mol. Catal. A: Chem., 2004, 208, 187–194.Google Scholar
  239. 239.
    K. Rozga-Wijas, J. Chojnowska, W. Fortuniak, M. Sciborek, Z. Michalska, L. Rogalski, J. Mater. Chem., 2003, 13, 2301–2310.Google Scholar
  240. 240.
    Z.P. Fang, H.T. Yang, O.J. Miao, G.P. Cai, Chin. Chem. Lett., 2006, 1155–1158.Google Scholar
  241. 241.
    A. Corma, C. Gonzalez-Arellano, M. Iglesias, F. Sanchez, Angew. Chem. Int. Ed., 2007, 46, 7820–7822.Google Scholar
  242. 242.
    H. Oyamada, R. Akiyama, H. Hagio, T. Naito, S. Kobayashi, Chem. Commun., 2006, 4297–4299.Google Scholar
  243. 243.
    H. Hagio, M. Sugiura, S. Kobayashi, Synlett, 2005, 813–816.Google Scholar
  244. 244.
    N. Imlinger, K. Wurst, M.R. Buchmeiser, Chem. Mon., 2005, 136, 47–57.Google Scholar
  245. 245.
    EP 546 716 1992.Google Scholar
  246. 246.
    FR 91 13256 1991.Google Scholar
  247. 247.
    X. Lu, L. Zhang, Z. Wang, X. Liu, Y. Chen, Chem. Res. Chinese Univ., 1994, 10, 126–130.Google Scholar
  248. 248.
    C. Kann, X. Kong, C, Du, D. Liu, Polym. J., 2002, 34, 97–102.Google Scholar
  249. 249.
    U. Schubert, C. Egger, K. Rosse, C. Alt, J. Mol. Catal., 1989, 55, 330–339.Google Scholar
  250. 250.
    J. Alauzun, A. Mehdi, C. Reyé, R. Corriu, Chem. Matter., 2007, 19, 6373–6375.Google Scholar
  251. 251.
    B. Marciniec, K. Szubert, M.J. Potrzebowski, I. Kownacki, K.Ł ęszczak, Angew. Chem. Int. Ed., 2008, 47, 541–544.Google Scholar
  252. 252.
    Pol. Pat. Appl. 380621.Google Scholar
  253. 253.
    Pol. Pat. Appl. 381555.Google Scholar
  254. 254.
    Pol. Pat. Appl., 381556, 383213.Google Scholar
  255. 255.
    WO 2008033043 2008.Google Scholar
  256. 256.
    J.S. Wilkes, M.J. Zaworotko, J. Chem. Soc. Chem. Commun., 1992, 965–967.Google Scholar
  257. 257.
    T. Welton, Coord. Chem. Rev., 2004, 248, 2459–2477.Google Scholar
  258. 258.
    T.J. Geldbach, P.J. Dyson, Metal-Catalysed Reactions in Ionic Liquids, Springer, 2005.Google Scholar
  259. 259.
    J. Broeke, F. Winter, B.-J. Deelman, G. Van Koten, Org. Lett., 2002, 4, 3851–3854.Google Scholar
  260. 260.
    J.J. Peng, J.Y. Li, Y. Bai, W.H. Gao, H.Y. Qiu, H. Wu, Y. Deng, G.Q. Lai, J. Mol. Catal. A: Chem., 2007 , 278, 97–101.Google Scholar
  261. 261.
    H. Maciejewski, A. Wawrzynczak, M. Dutkiewicz, R. Fiedorow, J. Mol. Catal. A: Chemical, 2006, 257, 141–149.Google Scholar
  262. 262.
    T.J.J. Geldbach, D. Zho, N.C. Castillo, G. Laurenczy, B. Weyershausen, P.J. Dyson J. Am. Chem. Soc., 2006, 128, 9773–9780.Google Scholar
  263. 263.
    B. Weyershausen, K. Hell, U. Hesse, ACS Symp. Ser., 2005, 902, 133–143.Google Scholar
  264. 264.
    B. Weyershausen, K. Hell, U. Hesse, Green Chem., 2005, 7, 283–287.Google Scholar
  265. 265.
    EP 1382630 2004.Google Scholar
  266. 266.
    R. Fiedorow, A. Wawrzynczak, Catalysts for hydrosi;lylation in heterogeneous systems, in: B. Marciniec (ed), Education in Advanced Chemistry, Wydawnictwo Poznanskie, Poznan2006, vol. 10, pp. 327–344.Google Scholar
  267. 267.
    US 6 100 408 2000.Google Scholar
  268. 268.
    A. Behr, F. Naendrup, D. Obst, Adv. Synth. Catal., 2002, 344, 1142–1145.Google Scholar
  269. 269.
    B. Marciniec, H, Maciejewski, W. Duczmal, R. Fiedorow, D. Kityński, Appl. Organomet. Chem., 2003, 17, 127–134.Google Scholar
  270. 270.
    J. Adamiec, R. Fiedorow, J. Charytonik, J. Guliński, H. Maciejewski, B. Marciniec, Przem. Chem., 2003, 82, 661–663.Google Scholar
  271. 271.
    US 6 177 585 2001.Google Scholar
  272. 272.
    US 6 087 523 2000.Google Scholar
  273. 273.
    C. Polizzi, A.M. Caporusso, G. Vitulli, P. Salvadori, J. Organometal. Chem., 1993, 451, C4–C6.Google Scholar
  274. 274.
    C. Polizzi, A.M. Caporusso, G. Vitulli, P. Salvadori, M. Pasero, J. Mol. Catal., 1994, 91, 83–90.Google Scholar
  275. 275.
    N. Lewis, Chem. Rev., 1993, 93, 2693–2730.Google Scholar
  276. 276.
    L.N. Lewis, R.J. Uriarte, Organometallics, 1990, 9, 621–625.Google Scholar
  277. 277.
    L.N. Lewis, J. Am. Chem. Soc., 1990, 112, 5998–6004.Google Scholar
  278. 278.
    L.N. Lewis, R.J. Uriarte, N. Lewis: J. Mol. Catal., 1991, 66, 105–113.Google Scholar
  279. 279.
    L.N. Lewis, R.J. Uriarte, N. Lewis: J. Mol. Catal., 1991, 127, 67–74.Google Scholar
  280. 280.
    L.N. Lewis, K.G. Sy, G.L. Bryant, P.E. Donahue, Organometallics, 1991, 10, 3750–3759.Google Scholar
  281. 281.
    L.N. Lewis, J. Stein, A. Smith: Progress in Organosilicon Chemistry (Eds. B. Marciniec, J.Chojnowski), Chap. 17, Gordon&Breach Pub., Langhorne, 1995.Google Scholar
  282. 282.
    J. Stein, L.N. Lewis, Y. Gao, R.A. Scott, J. Am. Chem. Soc., 1999, 121, 3693–3703.Google Scholar
  283. 283.
    M.A. Brook, H.A. Ketelson, F.J. LaRonde, R. Pelton, Inorg. Chim. Acta, 1997, 264, 125–135.Google Scholar
  284. 284.
    G. Schmid, H. West, H. Mehles, A. Lehnert, Inorg. Chem., 1997, 36, 891–895.Google Scholar
  285. 285.
    A. Behr, N. Taslu, Chemia Ingenier, 1999, 71, 490–493.Google Scholar
  286. 286.
    P. Budjouk, S. Kloos, A.B. Rajkumar, J. Organomet. Chem., 1993, 443, C41–C43.Google Scholar
  287. 287.
    Y.-S. Song, B.R. Yoo, G.H. Lee, I.N. Jung, Organometallics, 1999, 18, 3109–3115.Google Scholar
  288. 288.
    S. Nagahara, T. Yamakawa, H. Yamamoto, Tetrahedron Lett., 2001, 42, 5057–5060.Google Scholar
  289. 289.
    T. Sudo, N. Asao, V. Gevorgian, J. Yamamoto, J. Org. Chem.,1999, 64, 2494–2499.Google Scholar
  290. 290.
    F. Buch, J. Brettar, S. Harder, Angew. Chem., Int. Ed., 2006, 45, 2741–2745.Google Scholar
  291. 291.
    US 5 922 895 1999.Google Scholar
  292. 292.
    J.B. Lambert, Y. Zhao, J. Am. Chem. Soc., 1996, 118, 7867–7868.Google Scholar
  293. 293.
    H.-U. Steinbereger, C. Bauch, T. Muller, N. Auner, Can. J. Chem., 2003, 81, 1223–1227.Google Scholar
  294. 294.
    J.C. Walton, A. Studer, Acc. Chem. Res., 2005, 38, 794–802.Google Scholar
  295. 295.
    S. Amrein, A. Studer, Chem. Commun., 2002, 1592–1593.Google Scholar
  296. 296.
    S. Amrein, A. Timmermann, A. Studer, Org. Lett., 2001, 3, 2357–2360.Google Scholar
  297. 297.
    B. Kopping, C. Chatgilialoglu, M. Zehndnar, B. Giese, J.Org.Chem., 1992, 57, 3994–4000.Google Scholar
  298. 298.
    V. Jakubek, A.J. Lees, Inorg. Chem., 2004, 43, 6869–6871.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Bogdan Marciniec
    • 1
  1. 1.Faculty of ChemistryA. Mickiewicz UniversityGrunwaldzka 6Poland

Personalised recommendations