Airbus Fly-By-Wire: A Total Approach To Dependability

  • Pascal Traverse
  • Isabelle Lacaze
  • Jean Souyris
Part of the IFIP International Federation for Information Processing book series (IFIPAICT, volume 156)

Abstract

This paper deals with the digital electrical flight control system of the Airbus airplanes. This system is built to very stringent dependability requirements both in terms of safety (the systems must not output erroneous signals) and availability. System safety and availability principles are presented with an emphasis on their evolution and on future challenges

Key words

dependability fault-tolerance safety proof human factors system design airplane fly-by-wire flight controls 

References

  1. 1.
    D. Brière, and P. Traverse, Airbus A320/A330/A340 electrical flight controls — a family of fault-tolerant systems, Proc. 23 rd IEEE Int. Symp. On Fault-Tolerant Computing (FTCS-23), Toulouse, France, pp. 616–623 (1993).Google Scholar
  2. 2.
    D. Brière, and P. Traverse, Airbus electrical flight controls — a family of fault-tolerant systems, Proc. RTO/SCI Symp. on Challenges in Dynamics, System Identification, Control and Handling Qualities for Land, Air, Sea and Space Vehicles, Berlin, Germany, RTO-MP-095, paper 29 (2002).Google Scholar
  3. 3.
    Topical Days on Fault Tolerance for Trustworthy and Dependable Information Infrastructure, IFIP World Computer Congress, Toulouse, France, Kluwer, (2004).Google Scholar
  4. 4.
    FAR/JAR 25, Airworthiness Standards: Transport Category Airplane, published by FAA, title 14, part 25, and Certification Specifications for Large Aeroplanes, published by EASA (former JAA), CS-25.Google Scholar
  5. 5.
    A. Avizienis, J.C. Laprie, and B. Randell, Fundamental Concepts of Dependability, LAAS report no. 01-145 (2001).Google Scholar
  6. 6.
    D. van den Bossche, EHA application to commercial transports — the Aerospatiale approach, Proceedings on conference on Recent Advances in Aerospace Hydraulics, Toulouse, France (1998) and More electric control surface actuation, Proceedings of Royal Aeronautical Society conference on More-Electric Aircraft, London, UK, 2004.Google Scholar
  7. 7.
    J. Farineau, Lateral electric flight control laws of a civil aircraft based upon eigen structure assignment technique, Proc. AIAA Guidance, Navigation and Control Conference, Boston, MA, USA (1989).Google Scholar
  8. 8.
    C. Favre, Fly-by-wire for commercial aircraft: the Airbus experience, International Journal of Control, vol. 59,No. 1, pp.139–157 (1994).CrossRefGoogle Scholar
  9. 9.
    F. Kubica, T. Livet, X. LeTron, and A. Bucharles, Parameter-robust flight control system for a flexible aircraft, Control Engineering Practice, Vol. 3,No. 9, pp.1209–1215 (1995).CrossRefGoogle Scholar
  10. 10.
    T. Livet, D. Fath, and F. Kubica, Robust autopilot design for a highly flexible aircraft, Proc. 13 th IFAC World Congress, Vol. P, San Francisco, CA, USA, pp.279–284 (1995).Google Scholar
  11. 11.
    ARP 4754/ED79, Certification Considerations for Highly-Integrated or Complex Systems, published by SAE, no. ARP4754, and EUROCAE, no. ED79 (1996).Google Scholar
  12. 12.
    DO178B/ED12, Software Considerations in Airborne Systems and Equipment Certification, published by ARINC, no. DO178B, and EUROCAE, no. ED12, 1992.Google Scholar
  13. 13.
    DO254/ED80, Design Assurance Guidance for Airborne Electronic Hardware, published by ARINC, no. DO254, and EUROCAE, no. ED80 (2000).Google Scholar
  14. 14.
    F. Randimbivololona, J. Souyris, P. Baudin, A. Pacalet, J. Raguideau et D. Schoen. Applying Formal Proof Techniques to Avionics Software: A pragmatic Approach. FM99. LNCS 1709, Vol II.Google Scholar
  15. 15.
    S. Thesing, J. Souyris, R. Heckmann, F. Randimbivololona, M. Langenbach, R. Wilhelm, and C. Ferdinand, An Abstract Interpretation-Based Timing Validation of Hard Real-Time Avionics, Proc. Int Conf. on Dependable Systems and Networks (DSN) (June 2003).Google Scholar
  16. 16.
    P. Cousot. Interprétation abstraite, Technique et Science Informatique, Vol. 19, Nb 1-2-3., Hermès, Paris, France, pp. 155–164 (2000).Google Scholar
  17. 17.
    B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Minée, D. Monniaux, and X. Rival. A Static Analyzer for Large Safety-Critical Software, Proc. PLDI 2003 — ACM SIGPLAN SIGSOFT Conf. on Programming Language Design and Implementation, Federated Computing Research Conference, San Diego, CA USA, pp. 196–207 (2003).Google Scholar
  18. 18.
    E. Goubault, M. Martel, and S. Putot. Asserting the Precision of Floating-Point Computations: a Simple Abstract Interpreter (Demo Paper), ESOP’2002, LNCS.Google Scholar
  19. 19.
    ARP 4761, Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems, published by SAE, no. ARP4761 (1996).Google Scholar
  20. 20.
    Human Factors for Civil Flight Deck Design, published by Ashgate (2004).Google Scholar
  21. 21.
    I. Lacaze, Prise en compte du confort vibratoire dans la conception, Paris V University Report (2002).Google Scholar
  22. 22.
    D. Chatrenet, Les qualités de vol des avions de transport civil àa commandes de vol électriques, Proc. AGARD Conf. on Active Control Technology, Turin, Italy, AGARD-CP-560, paper 28 (1994).Google Scholar
  23. 23.
    J. Duprez, F. Mora-Camino and F. Villaume, Robust control of the aircraft on ground lateral motion, Proc. 24th ICAS Conf., Yokohama, Japan (2004).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2004

Authors and Affiliations

  • Pascal Traverse
    • 1
  • Isabelle Lacaze
    • 1
  • Jean Souyris
    • 1
  1. 1.AirbusToulouseFrance

Personalised recommendations