Evolutionary Morphology of the Tenrecoidea (Mammalia) Forelimb Skeleton

  • Justine A. Salton
  • Eric J. Sargis
Part of the Vertebrate Paleobiology and Paleoanthropology Series book series (VERT)
Functional morphology of the mammalian forelimb skeleton and the details of its joints have been explored and discussed in great depth relative to other postcranial regions, despite potential difficulties with interpreting the morphology of this region. The mammalian forelimb performs a variety of biological roles, including postural, locomotor, feeding, exploratory, grooming, and defense related behaviors. Detailed morphology might therefore reflect several overlapping functions and compromises between various demands. Much work has focused on primates, with a particular interest in climbing and rotational mechanics of the shoulder and elbow (e.g., Roberts, 1974; Roberts and Davidson, 1975; Fleagle and Simons, 1982; Rose, 1988, 1989; Harrison, 1989; Ciochon, 1993; Gebo and Sargis, 1994). Function-based analyses of mammalian diggers such as geomyids and vermilinguans focus on aspects of the shoulder, elbow, and wrist that correlate with digging and movement of soil (e.g., Campbell, 1939; Reed, 1951; Yalden, 1966; Taylor, 1978, 1985; Rose and Emry, 1983; Szalay and Schrenk, 1998; Stein, 2000). Studies of proportional differences and details of the shoulder and elbow joints in cursorial mammals have identified a suite of characteristics associated with lengthening the stride and stabilizing joints in the parasagittal plane for high-speed locomotion (e.g., Hopwood, 1947; Smith and Savage, 1956; Taylor, 1974; Hildebrand, 1995). There has been less published work on the functional morphology of aquatic mammals (but see Osburn 1903; Howell, 1970; Smith and Savage, 1956; Kerbis Peterhans and Patterson, 1995). This chapter is a comparative morphological study of the tenrecoid scapula, humerus, ulna, and radius, with particular emphasis on the shoulder and elbow joints. The following questions are addressed:
  1. (1)

    Do aspects of the tenrecoid forelimb exhibit intergeneric variation that correlate with expected differences based on positional behavior in other mammalian locomotor specialists?

  2. (2)

    Do taxon-specific features of the tenrecoid forelimb suggest phylogenetic affiliation among members of the tenrecoid subfamilies, such as those found in the hindlimb?

  3. (3)

    Do Solenodon, Petrodromus, and/or Echinosorex share characteristics of the forelimb with tenrecoids that might be phylogenetically meaningful?



Humeral Head Radial Head Great Tuberosity Medial Epicondyle Distal Humerus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Argot, C., 2001. Functional-adaptive anatomy of the forelimb in the Didelphidae, and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. Journal of Morphology 247, 51–79.CrossRefGoogle Scholar
  2. Barnosky, A. D., 1982. Locomotion in moles from the middle Tertiary of North America. Science 216, 183–185.CrossRefGoogle Scholar
  3. Biknevicius, A. R., 1993. Biomechanical scaling of limb bones and differential limb use in caviomorph rodents. Journal of Mammalogy 74, 95–107.CrossRefGoogle Scholar
  4. Casinos, A., Quintana, C., Viladiu, C., 1993. Allometry and adaptation in the long bones of a digging group of rodents. Zoological Journal of the Linnean Society 107, 107–115.CrossRefGoogle Scholar
  5. Campbell, B., 1939. The shoulder anatomy of the moles: a study in phylogeny and adaptation. American Journal of Anatomy 64, 1–39.CrossRefGoogle Scholar
  6. Ciochon, R. L., 1993. Evolution of the cercopithecoid forelimb: phylogenetic and functional implications from morphometric analyses. University of California Publications in Geological Sciences 138, 1–251.Google Scholar
  7. Eisenberg, J. F., Gould, E., 1970. The Tenrecs: A Study in Mammalian Behavior and Evolution. Smithsonian Institution Press, Washington, DC.Google Scholar
  8. Fleagle, J. G., Simons, E. L., 1982. The humerus of Aegyptopithecus zeuxis: a primitive anthropoid. American Journal of Physical Anthropology 59, 175–193.CrossRefGoogle Scholar
  9. Gebo, D. L., Sargis, E. J., 1994. Terrestrial adaptations in the postcranial skeletons of guenons. American Journal of Physical Anthropology 93, 341–371.CrossRefGoogle Scholar
  10. Grand, T. I., Barboza, P. S., 2001. Anatomy and development of the koala, Phascolarctos cinereus: an evolutionary perspective on the superfamily Vombatoidea. Anatomy and Embryology 203, 211–223.CrossRefGoogle Scholar
  11. Harrison, T., 1989. New postcranial remains of Victoriapithecus from the middle Miocene of Kenya. Journal of Human Evolution 18, 3–54.CrossRefGoogle Scholar
  12. Heinrich, R. E., Rose, K. D., 1997. Postcranial morphology and locomotor behaviour of two early Eocene miacoid carnivorans, Vulpavus and Didymictis. Palaeontology 40, 279–305.Google Scholar
  13. Hildebrand, M., 1985. Digging of quadrupeds. In: Hildebrand, M., Bramble, D. M., Liem, K. F., Wake, D. B. (Eds.), Functional Vertebrate Morphology. Belknap, Cambridge, MA, pp. 89–109.CrossRefGoogle Scholar
  14. Hildebrand, M., 1995. Analysis of Vertebrate Structure, 4th ed. Wiley, New York.Google Scholar
  15. Hopwood, A. T., 1947. Contributions to the study of some African mammals. III. Adaptations in the bones of the fore-limb of the lion, leopard and cheetah. Journal of the Linnean Society of London (Zoology) 41, 259–271.CrossRefGoogle Scholar
  16. Howell, A. B., 1970. Aquatic Mammals: Their Adaptation to Life in the Water. Dover, New York.CrossRefGoogle Scholar
  17. Kerbis Peterhans, J. C., Patterson, B. D., 1995. The Ethiopian water mouse Nilopegamys Osgood, with comments on semi-aquatic adaptations in African Muridae. Zoological Journal of the Linnean Society 113, 329–349.CrossRefGoogle Scholar
  18. Larson, S. G., 1993. Functional morphology of the shoulder in primates. In: Gebo, D. L. (Ed.), Postcranial Adaptation in Nonhuman Primates. Northern Illinois University Press, Dekalb, IL, pp. 45–69.Google Scholar
  19. Luo, Z-X., Wible, J. R., 2005. A Late Jurassic digging mammal and early mammalian diversification. Science 308, 103–107.CrossRefGoogle Scholar
  20. Monteiro, L. R., Abe, A. S., 1999. Functional and historical determinants of shape in the scapula of xenarthran mammals: evolution of a complex morphological structure. Journal of Morphology 241, 251–263.CrossRefGoogle Scholar
  21. Neveu, P., Gasc, J-P., 2002. Lipotyphla limb myology comparison. Journal of Morphology 252, 183–201.CrossRefGoogle Scholar
  22. Olson, L. E., Goodman, S. M., 2003. Phylogeny and biogeography of tenrecs. In: Goodman, S. M., Benstead, J. P. (Eds.), The Natural History of Madagascar. University of Chicago Press, Chicago, pp. 1235–1242.Google Scholar
  23. Osburn, R. C., 1903. Adaptation to aquatic, arboreal, fossorial and cursorial habits in mammals. I. Aquatic adaptations. American Naturalist 37, 651–665.CrossRefGoogle Scholar
  24. Reed, C. A., 1951. Locomotion and appendicular anatomy in three soricoid insectivores. American Midland Naturalist 45, 513–671.CrossRefGoogle Scholar
  25. Roberts, D., 1974. Structure and function of the primate scapula. In: Jenkins, F. A., Jr. (Ed.), Primate Locomotion. Academic Press, New York, pp. 171–200.Google Scholar
  26. Roberts, D., Davidson, I., 1975. The lemur scapula. In: Tattersall, I., Sussman, R. W. (Eds.), Lemur Biology. Plenum, New York, pp. 125–147.CrossRefGoogle Scholar
  27. Rose, K. D., Emry, R. J., 1983. Extraordinary fossorial adaptations in the Oligocene palaeanodonts Epoicotherium and Xenocranium (Mammalia). Journal of Morphology 175, 33–56.CrossRefGoogle Scholar
  28. Rose, M. D., 1988. Another look at the anthropoid elbow. Journal of Human Evolution 17, 193–224.CrossRefGoogle Scholar
  29. Rose, M. D., 1989. New postcranial specimens of catarrhines from the middle Miocene Chinji formation, Pakistan: descriptions and a discussion of proximal humeral functional morphology in anthropoids. Journal of Human Evolution 18, 131–162.CrossRefGoogle Scholar
  30. Salton, J. A, 2005. Evolutionary morphology of the postcranial skeleton in Afro-Malagasy Tenrecoidea (Mammalia). Ph.D. dissertation, City University of New York.Google Scholar
  31. Salton, J. A., Sargis, E. J., 2008. Evolutionary morphology of the Tenrecoidea (Mammalia) carpal complex. Biological Journal of the Linnean Society 93, 267–288.CrossRefGoogle Scholar
  32. Salton, J. A., Szalay, F. S., 2004. The tarsal complex of Afro-Malagasy Tenrecoidea: a search for phylogenetically meaningful characters. Journal of Mammalian Evolution 11, 73–104.CrossRefGoogle Scholar
  33. Sargis, E. J., 2002. Functional morphology of the forelimb of tupaiids (Mammalia, Scandentia) and its phylogenetic implications. Journal of Morphology 253, 10–42.CrossRefGoogle Scholar
  34. Simmons, N. B., 1994. The case for chiropteran monophyly. American Museum Novitates 3103, 1–54.Google Scholar
  35. Smith, J. M., Savage, R. J. G., 1956. Some locomotory adaptations in mammals. Zoological Journal of the Linnean Society 42, 603–622.CrossRefGoogle Scholar
  36. Springer, M. S., Stanhope, M. J., Madsen, O., de Jong, W. W., 2004. Molecules consolidate the placental mammal tree. Trends in Ecology and Evolution 19, 430–438.CrossRefGoogle Scholar
  37. Stein, B., 2000. Morphology of subterranean rodents. In: Lacey, E. A., Patton, J. L., Cameron, G. N. (Eds.), Life Underground: The Biology of Subterranean Rodents. University of Chicago Press, Chicago, pp. 19–61.Google Scholar
  38. Szalay, F. S., Dagosto, M., 1980. Locomotor adaptations as reflected on the humerus of Paleogene primates. Folia Primatologica 34, l–45.CrossRefGoogle Scholar
  39. Szalay, F. S., Sargis, E. J., 2001. Model-based analysis of postcranial osteology of marsupials from the Palaeocene of Itaboraí (Brazil), and the phylogenetics and biogeography of Metatheria. Geodiversitas 23, 139–302.Google Scholar
  40. Szalay, F. S., Schrenk, F., 1998. The middle Eocene Eurotamandua and a Darwinian phylogenetic analysis of “edentates”. Kaupia 7, 97–186.Google Scholar
  41. Taylor, M. E., 1974. The functional anatomy of the forelimb of some African Viverridae (Carnivora). Journal of Morphology 143, 307–336.CrossRefGoogle Scholar
  42. Taylor, B. K., 1978. The anatomy of the forelimb in the anteater (Tamandua) and its functional implications. Journal of Morphology 157, 347–368.CrossRefGoogle Scholar
  43. Taylor, B. K., 1985. Functional anatomy of the forelimb in vermilinguas (anteaters). In: Montgomery, G. G. (Ed.), The Evolution and Ecology of Armadillos, Sloths, and Vermilinguas. Smithsonian Institution Press, Washington, DC, pp. 163–171.Google Scholar
  44. Van Valkenburgh, B., 1987. Skeletal indicators of locomotor behavior in living and extinct carnivores. Journal of Vertebrate Paleontology 7, 162–182.CrossRefGoogle Scholar
  45. Vasquez-Molinero, R., Martin, T., Fischer, M. S., Frey, R., 2001. Comparative anatomical investigations of the postcranial skeleton of Henkelotherium guimarotae Krebs, 1991 (Eupantotheria, Mammalia) and their implications for its locomotion. Mitteilungen aus dem Museum für Naturkunde zu Berlin – Zoologische Reihe 77, 207–216.Google Scholar
  46. Verma, K., 1963. The appendicular skeleton of Indian hedgehogs. Mammalia 27, 564–580.CrossRefGoogle Scholar
  47. Yalden, D. W., 1966. The anatomy of mole locomotion. Journal of Zoology, London 149, 55–64.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Justine A. Salton
    • 1
  • Eric J. Sargis
    • 2
  1. 1.Program in BiologyBard CollegeAnnandale-on-HudsonUSA
  2. 2.Department of AnthropologyYale UniversityNew HavenUSA

Personalised recommendations