Evaluating the Mitten-Gliding Hypothesis for Paromomyidae and Micromomyidae (Mammalia, “Plesiadapiformes”) Using Comparative Functional Morphology of New Paleogene Skeletons

  • Doug M. Boyer
  • Jonathan I. Bloch
Part of the Vertebrate Paleobiology and Paleoanthropology Series book series (VERT)

Teeth of primate-like mammals from the Paleogene (“plesiadapiforms”) have been known for at least 130 years (Gervais, 1877). These fossil taxa are generally recognized as being closely related, but not monophyletic (e.g., Gingerich, 1976; Szalay et al., 1987; Beard, 1993a; Silcox, 2001; Bloch and Boyer, 2002a; Bloch et al., 2007) and we maintain that view here. Thus “plesiadapiforms” are referred to with quotation marks throughout the text to reflect that status. Vertebrate paleontologists have struggled to understand the nature of the phylogenetic relationship of “plesiadapiforms” to the extant and extinct members of crown group Primates [= Euprimates (Hoffstetter, 1977)], since Plesiadapis was first described by Gervais in 1877 (e.g., Lemoine, 1887; Stehlin, 1916; Teilhardde-Chardin, 1922; Gidley, 1923; Simpson, 1935; Russell, 1959; Simons, 1972; Szalay, 1973; Gingerich, 1975, 1976; Szalay et al., 1975; MacPhee et al., 1983; Gunnell, 1989; Kay et al., 1990; Beard, 1993a; Silcox, 2001; Bloch and Boyer, 2002a). The strongest support for a close relationship between “plesiadapiforms” and Euprimates, specifically, has historically come from the excellent fossil record of teeth known for “plesiadapiforms,” first in Europe and then in North America (e.g., Gidley, 1923). Cranial and postcranial fossils were relatively rare and fragmentary initially, such that the first researchers were unable to evaluate the presence of non-dental euprimate features in “plesiadapiforms.” As nondental fossils of “plesiadapiforms” were recovered there was some disagreement as to whether they suggested treeshrew or euprimate affinities. A humerus from the San Juan Basin (at the time attributed to Nothodectes) was figured by Gregory (1920) and interpreted to fit the “tupaioid” pattern. Later, a crushed skull and additional postcranial material associated with that specimen (and now referred to Nannodectes gidleyi Gingerich) was interpreted by Simpson (1935) as being similar to both lemurs and treeshrews. An implication of this acknowledged similarity was that Nannodectes spent time in the trees, as expected for the early forebears of the euprimate clade. However, Simpson (1935) discounted the similarities to treeshrews as being primitive (plesiomorphic), while he emphasized perceived shared-derived (synapomorphic) characters with lemurs as supporting a relationship with Euprimates. At the same time, he rejected any special relationship to Daubentonia, an idea that had been seriously considered based on the shared presence of procumbent incisors (Stehlin, 1916; Teilhard-de-Chardin, 1922). Instead, Simpson (1935) attributed this similarity to convergence. He interpreted the procumbent incisors of Nannodectes as feeding specializations for a way of life that likely differed in significant respects from that of the euprimates to which he had compared it (Lemur and Notharctus). He also interpreted the differences between Nannodectes and euprimates in other parts of the skeleton to reflect differing ecological specializations. These differences indicated to Simpson that Nannodectes could not be the direct ancestor to later occurring euprimates. Description of two skulls of Plesiadapis tricuspidens, from Cernay and Berru, France, appeared to support a euprimate relationship in certain characteristics. These included a bony auditory bulla continuous with the petrosal bone, and a thin, ring-like intrabullar component to the ectotympanic bone (Russell, 1959, 1964; Szalay, 1971; Gingerich, 1976; Szalay et al., 1987). Additional cranial material also supported a “plesiadapiform”-euprimate link. Szalay (1972b) described Phenacolemur jepseni, and found that it too had a petrosal bulla (although, see MacPhee et al., 1983; Bloch and Silcox, 2001), and additionally, that it had a large posterior carotid canal for the internal carotid artery. He concluded that it would have had a transpromontorial bony tube for this vessel, as in many early Eocene adapoid and omomyoid euprimates. Additional evidence for an arboreal lifestyle began to accumulate with fragmentary postcranials (e.g., Szalay and Decker, 1974).


Vertebrate Paleontology Proximal Phalange Elongation Index Patellar Groove Distal Articular Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beard, K. C., 1989. Postcranial anatomy, Locomotor Adaptations, and Palaeoecology of Early Cenozoic Plesiadapidae, Paromomyidae, and Micromomyidae (Eutheria, Dermoptera). Ph.D. dissertation, Johns Hopkins University, Baltimore, MD.Google Scholar
  2. Beard, K. C., 1990. Gliding behavior and palaeoecology of the alleged primate family Paromomyidae (Mammalia, Dermoptera). Nature 345, 340–341.Google Scholar
  3. Beard, K. C., 1991. Vertical posture and climbing in the morphotype of Primatomorpha: implications for locomotor evolution in primate history. In: Coppens, Y., Senut, B. (Eds.), Origine(s) de la Bipedie chez les Hominides. CNRS, Paris, pp. 79–87.Google Scholar
  4. Beard, K. C., 1993a. Phylogenetic systematics of the Primatomorpha, with special reference to Dermoptera. In: Szalay, F., Novacek, M., McKenna, M. (Eds.), Mammal Phylogeny: Placentals. Springer, New York, pp. 129–150.Google Scholar
  5. Beard, K. C., 1993b. Origin and evolution of gliding in early cenozic dermoptera (Mammalia, Primatomorpha). In: MacPhee, R. (Ed.), Primates and their Relatives in Phylogenetic Perspective. Plenum, New York, pp. 63–90.Google Scholar
  6. Beard, K. C., 2006. Iterative dispersal aross Beringia by early Cenozoic primates. American Journal of Physical Anthropology 129, 62A.Google Scholar
  7. Benton, R., 1967. Morphological evidence for adaptations within the epaxial region of the primates. In: Vagtborg, H. (Ed.). The Baboon in Medical Research. University of Texas Press, Austin, pp. 201–216.Google Scholar
  8. Biknevicius, A. R., 1986. Dental function and diet in the Carpolestidae (Primates: Plesiadapiformes). American Journal of Physical Anthropology 71, 157–171.Google Scholar
  9. Bloch, J. I. 2001. Mammalian paleontology of freshwater limestones from the Paleocene-Eocene of the Clarks Fork Basin, Wyoming, Ph. D. dissertation, University of Michigan, Ann Arbor, MI.Google Scholar
  10. Bloch, J.I., and Boyer, D. M. 2001. Taphonomy of small mammals in freshwater limestones from the Paleocene of the Clarks Fork Basin. In: Gingerich, P. D. (Ed.). Paleocene-Eocene Stratigraphy and Biotic Change in the Bighorn and Clarks Fork Basin, Wyoming, University of Michigan Papers on Paleontology (33) pp. 185–198.Google Scholar
  11. Bloch, J. I., Boyer, D. M., 2002a. Grasping primate origins. Science 298, 1606–1610.Google Scholar
  12. Bloch, J.I., Boyer, D.M., 2002b. Phalangeal morphology of Paleocene plesiadapiforms (Mammalia, ?Primates): evaluation of the gliding hypothesis and the first evidence for grasping in a possible primate ancestor. Geological Society of America Abstracts with Programs 34, 13A.Google Scholar
  13. Bloch, J. I., Boyer, D. M., 2007. New skeletons of Paleocene-Eocene Plesiadapiformes: a diversity of arboreal positional behaviors in early primates. In: Ravosa, M., Dagosto, M. (Eds.). Primate Origins: Adaptations and Evolution. Springer, New York, pp. 535–581.Google Scholar
  14. Bloch, J.I., Boyer, D.M., Gingerich, P.D., 2001a. Positional behavior of late Paleocene Carpolestes simpsoni (Mammalia, ?Primates). Journal of Vertebrate Paleontology 21, 34A.Google Scholar
  15. Bloch, J. I., Boyer, D. M., Gingerich, P. D., Gunnell, G. F., 2002a. New primitive paromomyid from the Clarkforkian of Wyoming and dental eruption in Plesiadapiformes. Journal of Vertebrate Paleontology 22, 366–379.Google Scholar
  16. Bloch, J. I., Boyer, D. M., Houde, P., 2003. New skeletons of Paleocene-Eocene micromomyids (Mammalia, Primates): functional morphology and implications for euarchontan relationships. Journal of Vertebrate Paleontology 23, 35A.Google Scholar
  17. Bloch, J. I., Fisher, D. C., Rose, K. D., Gingerich, P. D., 2001b. Stratocladistic analysis of Paleocene Carpolestidae (Mammalia, Plesiadapiformes) with description of a new late Tiffanian genus. Journal of Vertebrate Paleontology 21, 119–131.Google Scholar
  18. Bloch, J. I., Silcox, M. T., 2001. New basicrania of Paleocene-Eocene Ignacius: re-evaluation of the plesiadapiform-dermopteran link. American Journal of Physical Anthropology 116, 184–198.Google Scholar
  19. Bloch, J. I., Silcox, M. T., 2006. Cranial anatomy of the Paleocene plesiadapiform Carpolestes simpsoni (Mammalia, Primates) using ultra high-resolution X-ray computed tomography, and the relationships of plesiadapiforms to Euprimates. Journal of Human Evolution 50, 1–35.Google Scholar
  20. Bloch, J. I., Silcox, M. T., Boyer, D. M., Sargis, E. J., 2007. New Paleocene skeletons and the relationship of plesiadapiforms to crown-clade primates. Proceedings of the National Academy of Sciences USA 104, 1159–1164.Google Scholar
  21. Bloch, J. I., Silcox, M. T., Sargis, E. J., Boyer, D. M., 2002b. Origin and relationships of Archonta (Mammalia, Eutheria): Re-evaluation of Eudermoptera and Primatomorpha. Journal of Vertebrate Paleontology 22, 37A.Google Scholar
  22. Bock, W. J., 1977. Adaptation and the comparative method. In: Hecht, M., Goody, P., Hecht, B. (Eds.), Major Patterns in Vertebrate Evolution. Plenum, New York, pp. 57–82.Google Scholar
  23. Bock, W. J., 1981. Functional-adaptive analysis in evolutionary classification. American Zoologist 21, 5–20.Google Scholar
  24. Bock, W. J., 1988. The nature of explanations in morphology. American Zoologist 28, 205–215.Google Scholar
  25. Bock, W. J., 1991. Levels of complexity of organismic organization. In: Valvassori, R. (Ed.), Form and Function in Zoology. Modena, Mucchi, pp. 181–212.Google Scholar
  26. Bock, W. J., 1993. Selection and fitness: definitions and uses: 1859 and now. Proceedings of the Zoological Society of Calcutta, Haldane Commemorative Volume, pp. 7–26.Google Scholar
  27. Bock, W. J., 1999. Functional and evolutionary explanations in morphology. Netherlands Journal of Zoology 49, 45–65.Google Scholar
  28. Bock, W. J., von Wahlert, G., 1965. Adaptation and the form-function complex. Evolution 19, 269–299.Google Scholar
  29. Boyer, D. M., Bloch, J. I., 2002a. Structural correlates of positional behavior in vertebral columns of Paleocene small mammals. Journal of Vertebrate Paleontology 22, 38A.Google Scholar
  30. Boyer, D. M., Bloch, J. I., 2002b. Bootstrap comparisons of vertebral morphology of Paleocene Plesiadapiforms Mammalia, ?Primates): functional implications. Geological Society of America Abstracts with Programs 34, 13A.Google Scholar
  31. Boyer, D. M., Bloch, J. I., Gingerich, P. D., 2001. New skeletons of Paleocene paromomyids Mammalia, ?Primates): were they mitten gliders? Journal of Vertebrate Paleontology 21, 35A.Google Scholar
  32. Boyer, D. M., Bloch, J. I., Silcox, M. T., Gingerich, P. D., 2004. New observations on anatomy of Nannodectes (Mammalia, Primates) from the Paleocene of Montana and Colorado. Journal of Vertebrate Paleontology 24, 40A.Google Scholar
  33. Cartmill, M., 1972. Arboreal adaptations and the origin of the Order Primates. In: Tuttle, R. (Ed.), The Functional and Evolutionary Biology of Primates. Aldine-Atherton, Chicago, IL, pp. 97–122.Google Scholar
  34. Cartmill, M., 1974. Pads and claws in arboreal locomotion. In: Jenkins, F. (Ed.), Primate Locomotion. Plenum, New York, pp. 45–83.Google Scholar
  35. Dagosto, M., Gebo, D. L., Beard, K. C., 1999. Revision of the Wind River faunas, Early Eocene of central Wyoming. Part 14. Postcranium of Shoshonius cooperi (Mammalia: Primates). Annals of the Carnegie Museum 68, 175–211.Google Scholar
  36. Fleagle, J. G., 1999. Primate Adaptation and Evolution. Academic, New York.Google Scholar
  37. Gambaryan, P. P., 1974. How Mammals Run. Wiley, New York.Google Scholar
  38. Gebo, D. L., 1989. Postcranial adaptation and evolution in Lorisidae. Primates 30, 347–267.Google Scholar
  39. Gervais, M. P., 1877. Enumeration de quelques ossements d’animaux vertebres, recueillis aux environs de Reims par M. Lemoine. Journal de Zoologie 6, 74–79.Google Scholar
  40. Gidley, J. W., 1923. Paleocene primates of the Fort Union, with discussion of relationships of Eocene primates. Proceedings of the United States National Museum 63, 1–38.Google Scholar
  41. Gingerich, P. D., 1974. Function of pointed premolars in Phenacolemur and other mammals. Journal of Dental Research 53, 497.Google Scholar
  42. Gingerich, P. D., 1975. Systematic position of Plesiadapis. Nature 253, 111–113.Google Scholar
  43. Gingerich, P. D., 1976. Cranial anatomy and evolution of Early Tertiary Plesiadapidae (Mammalia, Primates). University of Michigan Papers on Paleontology 15, 1–141.Google Scholar
  44. Gingerich, P. D., Gunnell, G. F., 2005. Brain of Plesiadapis cookei (Mammalia, Propriamtes): surface morphology and encephalization compared to those of Primates and Dermoptera. University of Michigan Museum of Paleontology Contributions 31, 185–195.Google Scholar
  45. Godfrey, L. R., 1988. Adaptive diversification of Malagasy strepsirrhines. Journal of Human Evolution 17, 93–184.Google Scholar
  46. Godinot, M., 1984. Un nouveau de Paromomyidae (Primates) de l’Eocene Inferieur d’Europe. Folia Primatologica 43, 84–96.Google Scholar
  47. Godinot, M., Beard, K. C., 1991. Fossil primate hands: a review and an evolutionary inquiry emphasizing early forms. Journal of Human Evolution 6, 307–354.Google Scholar
  48. Gregory, W. K., 1910. The orders of mammals. Bulletin of the American Museum of Natural History 27, 1–524.Google Scholar
  49. Gregory, W. K., 1920. On the structure and relations of Notharctus, an American Eocene primate. Memoirs of the American Museum of Natural History 3, 45–243.Google Scholar
  50. Gunnell, G. F., 1989. Evolutionary history of Microsyopoidea (Mammalia, ?Primates) and the relationship between Plesiadapiformes and primates. University of Michigan, Papers on Paleontology 27, 1–157.Google Scholar
  51. Gunnell, G. F., and Gingerich, P. D., 1987. Skull and partial skeleton of Plesiadapis cookei from the Clark Fork Basin, Wyoming. American Journal of Physical Anthropology 72, 206–206.Google Scholar
  52. Haines, R. W., 1958. Arboreal or terrestrial ancestry of placental mammals. Quarterly Review of Biology 33, 1–23.Google Scholar
  53. Hamrick, M. W., 2001. Primate origins: evolutionary change in digit ray patterning and segmentation. Journal of Human Evolution 40, 339–351.Google Scholar
  54. Hamrick, M. W., Rosenman, B. A., Brush, J. A., 1999. Phalangeal morphology of the Paromomyidae (?Primates, Plesiadapiformes): The evidence for gliding behavior reconsidered. American Journal of Physical Anthropology 109, 397–413.Google Scholar
  55. Hoffstetter, R., 1977. Phylogenie des primates. Confrontation des resultats obtenus par les diverses voies d’approche du probleme. Bulletin et mémories de la Société d’anthropologie de Paris 4, 327–346.Google Scholar
  56. Hooker, J. J., 2001, Tarsals of the extinct insectivoran family Nyctitheriidae (Mammalia): evidence for archontan relationships. Zoological Journal of the Linnean Society 132, 501–529.Google Scholar
  57. Horovitz, I., 2003, Postcranial skeleton of Ukhaatherium nessovi (Eutheria, Mammalia) from the late Cretaceous of Mongolia. Journal of Vertebrate Paleontology 23, 857–868.Google Scholar
  58. Jenkins, F. A. Jr., 1970. Anatomy and function of expanded ribs in certain edentates and primates. Journal of Mammalogy 51, 288–301.Google Scholar
  59. Jenkins, F. A. Jr., 1974. Tree shrew locomotion and the origins of primate arborealism. In: Jenkins, F. A. (Eds.), Primate Locomotion. Academic, New York, pp. 85–115.Google Scholar
  60. Jenkins, F. A. Jr., Camazine, S. M., 1977. Hip structure and locomotion in ambulatory and cursorial carnivores. Journal of Zoology, London 181, 351–370.Google Scholar
  61. Kay, R. F., 2003. Review of the Primate Fossil Record, edited by W. Hartwig. American Journal of Human Biology 15, 839–840.Google Scholar
  62. Kay, R. F., Cartmill, M., 1977. Cranial morphology and adaptations of Palaechthon nacimienti and other Paromomyidae (Plesiadapoidea,? Primates), with a description of a new genus and species. Journal of Human Evolution 6, 19–35.Google Scholar
  63. Kay, R. F., Thorington, R. W. Jr., Houde, P., 1990. Eocene plesiadapiform shows affinities with flying lemurs not primates. Nature 345, 342–344.Google Scholar
  64. Kay, R. F., Thewissen, J. G. M., Yoder, A. D., 1992. Cranial anatomy of Ignacius graybullianus and the affinities of the Plesiadapiformes. American Journal of Physical Anthropology 89, 477–498.Google Scholar
  65. Krause, D. W., 1991. Were paromomyids gliders? Maybe, maybe not. Journal of Human Evolution 21, 177–188.Google Scholar
  66. Lemelin, P., 1999. Morphological correlates of substrate use in didelphid marsupials: implications for primate origins. Journal of Zoology 247, 165–175.Google Scholar
  67. Lemoine, V., 1887. Sur genre Plesiadapis, mammifere fossile de le’eocene inferieur des environs de Reims. Comptes-rendus des Seances de I’Académie des Sciences, Paris. for 1887, 190–193.Google Scholar
  68. Liu, F.-G. R., Miyamoto, M. M., 1999. Phylogenetic assessment of molecular and morphological data for eutherian mammals. Systematic Biology 48, 54–64.Google Scholar
  69. Liu, F.-G. R., Miyamoto, M. M., Freire, N. P., Ong, P. Q., Tennant, M. R., Young, T. S., Gugel, K. F., 2001. Molecular and morphological supertrees for eutherian (placental) mammals. Science 291, 1786–1789.Google Scholar
  70. MacPhee, R. D. E., Cartmill, M., 1986. Basicranial structures and primate systematics. In: Swindler, D., Erwin, J. (Eds.), Comparative Primate Biology, Volume 1. Alan R. Liss, New York, pp. 219–275.Google Scholar
  71. MacPhee, R. D. E., Cartmill, M., Gingerich, P. D., 1983. New Palaeogene Primate Basicrania and the definition of the Order Primates. Nature 301, 509–511.Google Scholar
  72. Madsen, O., Scally, M., Douady, C. J., Kao, D. J., DeBry, R. W., Adkins, R. M., Amrine, H. M., Stanhope, M. J., Jong, W. W. d., Springer, M. S., 2001. Parallel adaptive radiations in two major clades of placental mammals. Nature 409, 610–614.Google Scholar
  73. Martin, R. D., 1972. Adaptive radiation and behaviour of the Malagasy lemurs. Philosophical Transactions of the Royal Society of London 264, 295–352.Google Scholar
  74. Martin, R. D., 1979. Phylogenetic aspects of prosimian behavior. In: Doyle, G., Martin, R. (Eds.), The Study of Prosimian Behavior. Academic, New York, pp. 45–77.Google Scholar
  75. Martin, R. D., 1986. Primates: a definition. In: Wood, B., Martin, L., Andrews, P. (Eds.), Major Topics in Primate and Human Evolution. Cambridge University Press, Cambridge, pp. 1–31.Google Scholar
  76. McKenna, M. C., Bell, S. K., 1997. Classification of Mammals above the Species Level. Columbia University Press, New York.Google Scholar
  77. Mendel, F. C., 1979. The wrist joint of two-toed sloths and its relevance to brachiating adaptations in the Hominoidea. Journal of Morphology 162, 413–424.Google Scholar
  78. Mendel, F. C., 1985. Adaptations for suspensory behavior in the limbs of two-toed sloths. In: Montgomery, G. G. (Ed.), The Evolution and Ecology of Armadillos, Sloths, and Vermilinguas. Smithsonian Institute, Washington, DC, pp. 151–162.Google Scholar
  79. Meng, J., Hu, Y., Li, C., 2004 The osteology of Rhombomylus: implications for the phylogeny and evolution of Glires. Bulletin of the American Museum of Natural History 275, 1–247.Google Scholar
  80. Mill, J. S., 1872. A System of Logic: Ratiocinative and Inductive. Being a Connected View of the Principles of Evidence and the Methods of Scientific Investigation. Logman, London.Google Scholar
  81. Murphy, W. J., Eizirik, E., Johnson, W. E., Zhang, Y. P., Ryderk, O. A., O’Brien, S. J., 2001a. Molecular phylogenetics and the origins of placental mammals. Nature 409, 614–618.Google Scholar
  82. Murphy, W. J., Eizirik, E., O’Brien, S. J., Madsen, O., Scally, M., Douady, C. J., Teeling, E., Ryder, O. A., Stanhope, M. J., de Jong, W. W., Springer, M. S., 2001b. Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294, 2348–2351.Google Scholar
  83. Plotnick, R. E., Baumiller, T. K., 2000. Invention by evolution: functional analysis in paleobiology. Paleobiology supplement to 26, 305–323.Google Scholar
  84. Pocock, R. I., 1926. The external characters of the flying lemur (Galeopterus temminckii). Proceedings of the Zoological Society of London 29, 429–441.Google Scholar
  85. Rose, K. D., 1987. Climbing adaptations in the early Eocene mammal Chriacus and the origin of Artiodactyla. Science 236, 314–316.Google Scholar
  86. Rose, K. D., 1999. Postcranial skeleton of the Eocene Leptictidae (Mammalia), and its implications for behavior and relationships. Journal of Vertebrate Paleontology 15, 401–430.Google Scholar
  87. Rose, K. D., Chinnery, B. J., 2004. The postcranial skeleton of early Eocene rodents. Bulletin of the Carnegie Museum of Natural History 36, 211–243.Google Scholar
  88. Runestad, J. A., Ruff, C. B., 1995. Structure adaptations for gliding in mammals with implications for locomotor behavior in paromomyids. American Journal of Physical Anthropology 98, 101–119.Google Scholar
  89. Russell, D. E., 1959. Le crane de Plesiadapis. Bulletin de la Société Géologique de France 1, 312–314.Google Scholar
  90. Russell, D. E., 1964. Les Mammiferes Paléocènes D’Europe. Mémoires du Muséum national d’histoire naturelle. sér. c 13, 1–324.Google Scholar
  91. Sargis, E. J., 2001a. A preliminary qualitative analysis of the axial skeleton of tupaiids (Mammalia, Scandentia): functional morphology and phylogenetic implications. Journal of Zoology 253, 473–483.Google Scholar
  92. Sargis, E. J., 2001b. The grasping behaviour, locomotion and substrate use of the tree shrews Tupaia minor and T. tana (Mammalia, Scandentia). Journal of Zoology 253, 485–490.Google Scholar
  93. Sargis, E. J., 2002a. Functional morphology of the hindlimb of tupaiids (Mammalia, Scandentia) and its phylogenetic implications. Journal of Morphology 254, 149–185.Google Scholar
  94. Sargis, E. J., 2002b. Functional morphology of the forelimb of tupaiids (Mammalia, Scandentia) and its phylogenetic implications. Journal of Morphology 253, 10–42.Google Scholar
  95. Sargis, E. J., 2002c. The postcranial morphology of Ptilocercus lowii (Scandentia, Tupaiidae): An analysis of Primatomorphan and volitantian characters. Journal of Mammalian Evolution 9, 137–160.Google Scholar
  96. Sargis, E. J., 2004. New views on tree shrews: the role of tupaiids in primate supraordinal relationships. Evolutionary Anthropology 13, 56–66.Google Scholar
  97. Sargis, E. J., 2007. The postcranial morphology of Ptilocercus lowii (Scandentia, Tupaiidae) and its implications for primate supraordinal relationships. In: Ravosa, M., Dagosto, M. (Eds.), Primate Origins and Adaptations. Springer, New York, pp. 51–82.Google Scholar
  98. Sargis, E. J., Bloch, J. I., Boyer, D. M., Silcox, M. T., 2005. Evolution of grasping in Euarchonta. Journal of Vertebrate Paleontology 25, 109A.Google Scholar
  99. Sargis, E. J., Boyer, D. B., Bloch, J. I., Silcox, M. T. 2007. Evolution of pedal grasping in primates. Journal of Human Evolution 53, 103–107.Google Scholar
  100. Shapiro, L. J., 1993. Functional morphology of the vertebral column in primates. In: Gebo, D. L. (Eds.), Postcranial Adaptation in Nonhuman Primates. Northern Illinois Press, DeKalb, pp. 121–149.Google Scholar
  101. Shapiro, L. J., 1995. Functional morphology of indriid lumbar vertebrae. American Journal of Physical Anthropology 98, 323–342.Google Scholar
  102. Shapiro, L. J., Simons, C. V. M., 2002. Functional aspects of strepsirrhine lumbar vertebral bodies and spinous processes. Journal of Human Evolution 42, 753–783.Google Scholar
  103. Silcox, M. T., 2001. A Phylogenetic Analysis of Plesiadapiformes and Their Relationship to Euprimates and Other Archontans. Ph.D. dissertation, Johns Hopkins University, Baltimore, MD.Google Scholar
  104. Silcox, M. T., 2003. New discoveries on the middle ear anatomy of Ignacius graybullianus (Paromomyidae, Primates) from ultra high resolution X-ray computed tomography. Journal of Human Evolution 44, 73–86.Google Scholar
  105. Silcox, M. T., Bloch J. I., Boyer, D. M., Sargis E. J., 2005. Euarchonta (Dermoptera, Scandentia, Primates). In: Rose, K. D., Archibald, J. D. (Eds.), Rise of Placental Mammals. Johns Hopkins University Press, Baltimore, MD, pp. 127–144.Google Scholar
  106. Simmons, N. B., Quinn, T. H., 1994. Evolution of the digital tendon locking mechanism in bats and dermopterans: a phylogenetic perspective. Journal of Mammalian Evolution 2, 231–254.Google Scholar
  107. Simons, E. L., 1972. Primate Evolution: An Introduction to Man’s Place in Nature. Macmillan, New York.Google Scholar
  108. Simpson, G. G., 1935. The Tiffany fauna, upper Paleocene. II.-Structure and relationships of Plesiadapis. American Museum Novitates 816, 1–30.Google Scholar
  109. Slijper, E. J., 1946. Comparative biologic-anatomical investigations on the vertebral column and spinal musculature of mammals. Verhandlungen des Koninklijke Nederlandse Akademie van Wetenschappen Tweede Sectie 42, 1–128.Google Scholar
  110. Stafford, B. J., 1999. Taxonomy and Ecological Morphology of the Flying Lemurs (Dermoptera, Cynocephalidae). Ph.D. dissertation, City University of New York.Google Scholar
  111. Sokal, R. R., Rohlf, J. F., 1997. Biometry, the Principles and Practice of Statistics in Biological Research. W. H. Freeman, New York.Google Scholar
  112. Stafford, B. J., Szalay, F. S., 2000. Craniodental functional morphology and taxonomy of dermopterans. Journal of Mammalogy 81, 360–385.Google Scholar
  113. Stafford, B. J., Thorington, R. W. J., 1998. Carpal development and morphology in archontan mammals. Journal of Morphology 235, 135–155.Google Scholar
  114. Stehlin, H. G., 1916. Die Saugetiere des Schweizerischen Eocaens. 7 Teil, 2 Halfte. Schweizerische paläontologische Abhandlungen 41, 1299–1552.Google Scholar
  115. Stern Jr., J. T., Jungers, W. L., Susman, R. L., 1995. Quantifying phalangeal curvature: an empirical comparison of alternative methods. American Journal of Physical Anthropology 97, 1–10.Google Scholar
  116. Sussman, R. W., Raven, P. H., 1978. Pollination by lemurs and marsupials: an archaic coevolutionary system. Science 200, 731–736.Google Scholar
  117. Sussman, R. W., Kinzey, W. G., 1984. The ecological role of the Callitrichidae: a review. American Journal of Physical Anthropology 64, 419–449.Google Scholar
  118. Szalay, F. S., 1968. Beginnings of primates. Evolution 22, 19–36.Google Scholar
  119. Szalay, F. S., 1971. Cranium of the late Palaeocene primate Plesiadapis tricuspidens. Nature 230, 324–325.Google Scholar
  120. Szalay, F. S., 1972a. Paleobiology of the earliest primates. In: Tuttle, R. (Ed.), The Functional and Evolutionary Biology of the Primates. Aldine-Atherton, Chicago, IL, pp. 3–35.Google Scholar
  121. Szalay, F. S., 1972b. Cranial morphology of early Tertiary Phenacolemur and its bearing on primate phylogeny. American Journal of Physical Anthropology 36, 59–76.Google Scholar
  122. Szalay, F. S., 1973. New Paleocene Primates and a diagnosis of the new suborder Paromomyiformes. Folia primatologica 19, 73–87.Google Scholar
  123. Szalay, F. S., 1975. Where to draw the primate-nonprimate boundary. Folia Primatologica 23, 158–163.Google Scholar
  124. Szalay, F. S., 1977. Ancestors, descendants, sister groups and testing of phylogenetic hypotheses. Systematic Zoology 26, 12–18.Google Scholar
  125. Szalay, F. S., 1981. Phylogeny and the problem of adaptive significance–the case of the earliest primates. Folia Primatologica 36, 157–182.Google Scholar
  126. Szalay, F. S., 1984. Arboreality: is it homologous in metatherian and eutherian mammals? Evolutionary Biology 18, 215–258.Google Scholar
  127. Szalay, F. S., 1998. The middle Eocene Eurotamandua and a Darwinian phylogenetic analysis of “edentates”. Kaupia, Darmstader Beitrage zur Naturgeschichte 7, 97–186.Google Scholar
  128. Szalay, F. S., 2000. Function and adaptation in paleontology: why omit Darwin? Palaeontologica electronica. 3, 366 KB;
  129. Szalay, F. S., Bock, W. J., 1991. Evolutionary-theory and systematics–Relationships between process and patterns. Zeitschrift für Zoologische Systematik und Evolutionsforschung 29, 1–39.Google Scholar
  130. Szalay, F. S., Dagosto, M., 1980. Locomotor adaptations as reflected on the humerus of Paleogene Primates. Folia Primatologica 34, 1–45.Google Scholar
  131. Szalay, F. S., Dagosto, M., 1988. Evolution of hallucial grasping in the primates. Journal of Human Evolution 17, 1–33.Google Scholar
  132. Szalay, F. S., Decker, R. L., 1974. Origins, evolution, and function of the tarsus in Late Cretaceous Eutheria and Paleocene Primates. In: Jenkins, F. (Ed.), Primate Locomotion. Academic, New York, pp. 223–259.Google Scholar
  133. Szalay, F. S., Drawhorn, G., 1980. Evolution and diversification of the Archonta in an arboreal milieu. In: Luckett, W. P. (Ed.), Comparative Biology and Evolutionary Relationships of Tree Shrews. Plenum, New York, pp. 133–169.Google Scholar
  134. Szalay, F. S., Lucas, S. C., 1996. The postcranial morphology of Paleocene Chriacus and Mixodectes and the phylogenetic relationships of archontan mammals. Bulletin of the New Mexico Museum of Natural History and Science 7, 1–47.Google Scholar
  135. Szalay, F. S., Rosenberger, A. L., Dagosto, M., 1987. Diagnosis and differentiation of the order Primates. Yearbook of Physical Anthropology 30, 75–105.Google Scholar
  136. Szalay, F. S., Sargis, E. J., 2001. Model-based analysis of postcranial osteology of marsupials from the Palaeocene of Itaboraí (Brazil) and the phylogenetics and biogeography of Metatheria. Geodiversitas 23, 139–302.Google Scholar
  137. Szalay, F. S., Tattersall, I., Decker, R. L., 1975. Phylogenetic relationships of Plesiadapis–postcranial evidence. Contributions to Primatology 5, 136–166.Google Scholar
  138. Teilhard-de-Chardin, P., 1922. Les mammiferes de l’Eocene inferieur francais et leurs gisements. Annales de Paléontologie 11, 9–116.Google Scholar
  139. Thorington, R. W., Heaney, L. R., 1981. Body proportions and gliding adaptations of flying squirrels (Petauristinae). Journal of Mammalogy 62, 101–114.Google Scholar
  140. Thorington, R. W. J., Schennum, C. E., Pappas, L. A., Pitassy, D., 2005. The difficulties of identifying flying squirrels (Sciuridae: Pteromyini) in the fossil record. Journal of Vertebrate Paleontology 25, 950–961.Google Scholar
  141. Van Den Bussche, R. A., Hoofer, S. R., 2004. Phylogenetic relationships among recent chiropteran families and the importance of choosing appropriate out-group taxa. Journal of Mammalogy 85, 321–330.Google Scholar
  142. Walker, A. C., 1974. Locomotor adaptations in past and present prosimian primates. In: Jenkins, F. (Ed.), Primate Locomotion. Academic, New York, pp. 349–381.Google Scholar
  143. Wharton, C. H., 1950. Notes on the life history of the flying lemur. Journal of Mammalogy 31, 269–273.Google Scholar
  144. White, J. L., 1993. Indicators of locomotor habits in xenarthrans: Evidence of locomotor heterogeneity among fossil sloths. Journal of Vertebrate Paleontology 13, 230–242.Google Scholar
  145. Wible, J. R., Martin, J. R., 1993. Ontogeny of the tympanic floor and roof in archontans. In: MacPhee, R. (Ed.), Primates and their Relatives in Phylogenetic Perspective. Plenum, New York, pp. 111–148.Google Scholar
  146. Youlatos, D., 1999. Positional behavior in Cebuella pygmaea in Yasuni National Park, Ecuador. Primates 40, 543–550.Google Scholar
  147. Youlatos, D., Godinot, M., 2004. Locomotor adaptations of Plesiadapis tricuspidens and Plesiadapis n. sp. (Mammalia, Plesiadapiformes) as reflected in selected parts of the postcranium. Journal of Anthropological Science 82, 103–118.Google Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Doug M. Boyer
    • 1
  • Jonathan I. Bloch
    • 2
  1. 1.Department of Anatomical SciencesStony Brook UniversityStony BrookUSA
  2. 2.Florida Museum of Natural HistoryUniversity of FloridaGainesvilleUSA

Personalised recommendations