Major properties of dendritic cells and their actual and potential applications in cancer therapy and infectious disease prophylaxis

  • Irina O. Chikileva
  • Natalia Yu. Anisimova
  • Olga V. Lebedinskaya
  • Mikhail V. Kiselevsky
  • Vyacheslav M. Abramov


Dendritic cells are generally considered to be the most powerful and important among other antigen-presenting cells. Their major functions consist of capturing and processing different microbial antigens and the subsequent activation of naÏve and resting memory antigen-specific T cells. There exist multiple dendritic cell subtypes expressing different sets of receptors, recognizing antigens and “danger signals” (lectins, receptors for constant fragments of antibodies, Toll-like receptors for conserved pathogen-associated molecular patterns and even natural killer receptors targeting virus-infected or tumour cells). Due to their variability and functional plasticity, dendritic cells are able to execute multiple functions including the initiation of immune reactions favourable for protection against different infectious agents or the induction of tolerance towards self-antigens and allergens. It is obvious that dendritic cell physiology should be considered in the design and production of new, more effective vaccines. Several methods of generation of dendritic cells in vitro were developed. Vaccines based on such dendritic cells were used successfully in mice to elicit protective T-cell immunity against pathogens and tumours. Their usefulness in the prevention and treatment of human infectious diseases and cancer is currently under investigation.


dendritic cells morphology functions Phenotype Vaccines 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Akbar S.M., Furukawa S., Hasebe A., Horiike N., Michitaka K., Onji M. (2004) Production and efficacy of dendritic cell-based vaccine for murine chronic hepatitis B virus carrier. Int. J. Mol. Med. 14: 295–299.PubMedGoogle Scholar
  2. [2]
    Akbar S.M., Furukawa S., Onji M., Murata Y., Niva T., Kanno S., Murakami H., Horiike N. (2004) Safety and efficacy of hepatitis B surface antigen-pulsed dendritic cells in human volunteers. Hepatol. Res. 29: 136–141.Google Scholar
  3. [3]
    Akhmatova N.K., Lebedinskaya O.V., Kiselevsky M.V., Makashin A. I., Semenova I.B., Kurbatova E.A., Egorova N. B., Semenov B. F. (2005) Influence of dendritic cells generated using immunomodulators of microbial origin on proliferative and cytotoxic activities of lymphocytes. JMEI 6: 58–62.Google Scholar
  4. [4]
    Akhmatova N.K., Semenova I.B., Kurbatova E.A., Lebedinskaya O. V., Egorova N.B., Shubina I.J., Kiselevsky M. V. (2006) Phagocytic activity of dendritic cells generated from mouse bone marrow. Vestnik Ural’skoy medecinskoy akademicheskoi nauki. 1: 14–18 (Original text in Russian).Google Scholar
  5. [5]
    Ardavin C., Wu L., Li C.L., Shortman K. (1993) Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population. Nature 362: 761–763.PubMedGoogle Scholar
  6. [6]
    Ardavin C. (1997) Thymic dendritic cells. Immunol. Today 180: 350–361.Google Scholar
  7. [7]
    Ardavin C., Martinez del Hoy. G., Martin P., Anjuere F., Arias C.F., Marin A.R., Ruiz S., Parrillas V., Hernandes H. (2001) Origin and differentiation of dendritic cells. Trends Immunol. 22: 691–700.PubMedGoogle Scholar
  8. [8]
    Asselin-Paturel C., Boonstra A., Dalod M., Durand I., Yessand N., Dezutter-Dambuyant C., Vicari A., O’Garra A., Biron C., Briere F., Trinchieri G. (2001) Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat. Immunol. 2: 1144–1150.PubMedGoogle Scholar
  9. [9]
    Bacci A., Montagnoli C., Perruccio K., Bozza S. Gaziano R., Pitzurra L., Velardi A., Fe’ d’Ostiani C., Cutler J.E., Romani L. (2002) Dendritic cells pulsed with fungal RNA induce protective immunity to Candida albicans in hematopoietic transplantation. J. Immunol. 168: 2904–2913.PubMedGoogle Scholar
  10. [10]
    Banchereau J., Steinman R.M. (1998) Dendritic cells and the control of immunity. Nature 392: 245–252.PubMedGoogle Scholar
  11. [11]
    Banerjee D.K., Dhodapkar M.V., Matayeva E., Steinman R. M., Dhodapkar K.M. (2006) Expansion of FOXP3high regulatory T cells by human dendritic cells (DCs) in vitro and after injection of cytokine-matured DCs in myeloma patients. Blood 108: 2655–2661.PubMedGoogle Scholar
  12. [12]
    Belli F., Testori A., Rivoltini L., Maio M., Andreola G., Sertoli M. R., Gallino G., Piris A., Cattelan A., Lazzari I., Carrabba M., Scita G., Santantonio C., Pilla L., Tragni G., Lombardo C., Arienti F., Marchiano A., Queirolo P., Bertolini F., Cova A., Lamaj E., Ascani L., Camerini R., Corsi M., Cascinelli N., Lewis J. J., Srivastava P., Parmiani G. (2002) Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: clinical and immunologic findings. J. Clin. Oncol. 20: 4169–4180.PubMedGoogle Scholar
  13. [13]
    Bjorck P. (2001) Isolation and characterization of plasmacytoid dendritic cells from Flt3 ligand and granulocyte–macrophage colony-stimulating factor-treated mice. Blood 98: 3520–3526.PubMedGoogle Scholar
  14. [14]
    Blom B., Ho S., Antonenko S., Liu Y.J. (2000) Generation of interferon-α-producing predendritic cell (Pre-DC)2 from human CD34+ hematopoietic stem cells. J. Exp. Med. 192: 1785–1795.PubMedGoogle Scholar
  15. [15]
    Borkowskki T.A., Letterio J.J., Farr A.G., Udey M.C. (1996) A role for endogenous transforming growth factor β 1 in Langerhans-cell biology: the skin of transforming growth factor β 1 null mice is devoid of epidermal Langerhans cells. J. Exp. Med. 184: 2417–2422.Google Scholar
  16. [16]
    Bourguin I., Moser M., Buzoni-Gatel D., Tielemans F., Bout D., Urbain J., Leo O. (1998) Murine dendritic cells pulsed in vitro with Toxoplasma gondii antigens induce protective immunity in vivo. Infect Immun. 66: 4867–4874.PubMedGoogle Scholar
  17. [17]
    Brasel K., De Smed. T., Smith J.L., Maliszewski C.R. (2000) Generation of murine dendritic cells from flt3-ligand-supplemented bone marrow cultures. Blood 96: 3029–3039.PubMedGoogle Scholar
  18. [18]
    Bruder D., Westendorf A.M., Hansen W., Prettin S., Grubber A.D., Qian Y., von Boehme. H., Mahnke K., Buer J. (2005) T-cell stimulation by steady-state dendritic cells prevents autoimmune diabetes. Diabetes 54: 3395–3401.PubMedGoogle Scholar
  19. [19]
    Caldwell S., Heitger A., Shen W., Liu Y., Taylor B., Ladisch S. (2003) Mechanisms of ganglioside inhibition of APC function. J. Immunol. 171: 1676–1683.PubMedGoogle Scholar
  20. [20]
    Cao W., Lee S.H., Lu J. (2005) CD83 is preformed inside monocytes, macrophages and dendriti. cell., but it is only stably expressed on activated dendritic cells. Biochem. J. 385: 85–93.PubMedGoogle Scholar
  21. [21]
    Caux C., Massacrier C., Dezutter-Dambuyant C., Vanbervilet B., Jaquet C., Schmitt D., Banchereau J. (1995) Human dendritic Langerhans cells generated in vitro from CD34+ progenitors can prime naive CD4+ T cells and process soluble antigen. J. Immunol. 155: 5427–5435.PubMedGoogle Scholar
  22. [22]
    Caux C., Vanbervilet B., Massacrier C., Dezutter-Dambuyant C., de Saint-Vis B., Jaquet C., Yoneda K., Imamura S., Schmitt D., Banchereau J. (1996) CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNFα. J. Exp. Med. 184: 695–706.PubMedGoogle Scholar
  23. [23]
    Cella M., Engering A., Pinet V., Pietras T., Lanzavecchia A. (1997) Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature 388: 782–787.PubMedGoogle Scholar
  24. [24]
    Chan C.W., Crafton E., Fan H.N., Flook J., Yoshimura K., Skarica M., Brokstedt D., Dubensky T.W., Stins M.F., Lanier L.L., Pardoll D.M., Housseau F. (2006) Interferon-producing killer dendritic cells provide a link between innate and adaptive immunity. Nat. Med. 12: 207–213.PubMedGoogle Scholar
  25. [25]
    Chen L., Calomeni E., Wen J., Ozato K., Shen R., Gao J.-X. (2007) Natural killer dendritic cells are an intermediate of developing dendritic cells. J. Leukoc. Biol. 81: 1422–1433.PubMedGoogle Scholar
  26. [26]
    Chen Z., Dehm S., Bonham K., Kamencic H., Juurlink B., Zhang X., Gordon J.R., Xiang J.S. (2001) DNA array and biological characterization of the impact of the maturation status of mouse dendritic cells on their phenotype and antitumor vaccination efficacy. Cell Immunol. 214: 60–71.PubMedGoogle Scholar
  27. [27]
    Chikileva I.O., Khalturina E.O., Mazurov D.V., Lvov V.A., Shmigol V.I., Aparin P.G., Shingarova L.N., Vasilenko R.N., Abramov V.M., Danenko F.V., Kiselevsky M.V. (2003) Effect of different types of bacterial lipopolysaccharide on the differentiation of human dendritic cells. Mol. Med. 3: 54–58 (Original text in Russian).Google Scholar
  28. [28]
    Cho B.K. (2000) A proposed mechanism for the induction of cytotoxic T lymphocyte production by heat shock fusion proteins. Immunity 12: 263–272.PubMedGoogle Scholar
  29. [29]
    Cho H.J., Takabayashi K., Cheng P.M., Nguyen M.D., Corr M., Tuck S., Raz E. (2000) Immunostimulatory DNA-based vaccines induce cytotoxic lymphocyte activity by a T-helper cell-independent mechanism. Nat. Biotechnol. 18: 509–514.PubMedGoogle Scholar
  30. [30]
    Chomarat P., Dantin C., Bennett L., Banchereau J., Palucka A.K. (2003) TNF skews monocyte differentiation from macrophages to dendritic cells. J. Immunol. 171: 2262–2269.PubMedGoogle Scholar
  31. [31]
    Colic M., Mojsilovic S., Pavlovic B., Vucicevic D., Majstrovic I., Bufan B., Stojic-Vukanic Z., Vasiljic S., Vucevic D., Gasic S., Balint B. (2004) Comparison of two different protocols for the induction of maturation of human dendritic cells in vitro. Vojnosanit. Pregl. 61: 471–478.Google Scholar
  32. [32]
    Comeau M.R., Van der Vuurst de Vries A.-R., Maliszewski C.R., Galibert L. (2002) CD123bright plasmacitoid predendritic cells: progenitors undergoing cell fate conversion ? J. Immunol. 169: 75–83.PubMedGoogle Scholar
  33. [33]
    Corinti S., Albanesi C., La Sal. A., Pastore S., Girolomoni G. (2001) Regulatory activity of autocrine IL-10 on dendritic cell functions. J. Immunol. 166: 4312–4318.PubMedGoogle Scholar
  34. [34]
    Crawford K., Gabuzda D., Pantazopoulos V., Xu J., Clement C., Reinherz E., Alper C.A. (1999) Circulating CD2+ monocytes are dendritic cells. J. Immunol. 163: 5920–5928.PubMedGoogle Scholar
  35. [35]
    Czerniecki B.J., Koski G.K., Koldovsky U., Xu S., Cohen P.A., Mick R., Nisenbaum H., Pasha T., Xu M., Fox K.R., Weinstein S., Orel S.G., Vonderheide R., Coukos G., DeMichele A., Araujo L., Spitz F.R., Rosen M., Levine B.L., June C., Zhang P.J. (2007) Targeting HER-2/neu in early breast cancer development using dendritic cells with staged interleukin-12 burst secretion. Cancer Res. 67: 1842–1852.Google Scholar
  36. [36]
    Dalloul A.H., Patry C., Salamero J., Canque B., Grassi F., Schmitt C. (1999) Functional and phenotypic analysis of thymic CD34+CD1a- progenitor-derived dendritic cells: predominance of CD1a+ differentiation pathway. J. Immunol. 162: 5821–5828.PubMedGoogle Scholar
  37. [37]
    Dannull J., Su Z., Rizzieri D., Yang B. K., Coleman D., Yancey D., Zhang A., Dahm P., Chao N., Gilboa E., Vieweg J. (2005) Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J. Clin. Invest. 115: 3623–33.PubMedGoogle Scholar
  38. [38]
    Datta S.K., Redecke V., Prilliman K.R., Takabayashi K., Corr M., Tallant T., DiDonato J., Dziraski J., Akira S., Schoenberger S. P., Raz E. (2003) A subset of Toll-like receptor ligands induces cross-presentation by bone marrow-derived dendritic cells. J. Immunol. 170: 4102–4110.PubMedGoogle Scholar
  39. [39]
    Dauer M., Obermaier B., Herten J., Haerle C., Pohl K., Rothenfusser S., Schnurr M., Endres S., Eigler A. (2003) Mature dendritic cells derived from human monocytes within 48 hours: a novel strategy for dendritic cell differentiation from blood precursors. J. Immunol. 170: 4069–4076.PubMedGoogle Scholar
  40. [40]
    Demangel C., Bean A.G., Martin E., Feng C. G., Kamath A.T., Britton W.J. (1999) Protection against aerosol Mycobacterium tuberculosis infection using Mycobacterium bovis Bacillus Calmette Guerin-infected dendritic cells. Eur. J. Immunol. 29: 1972–1979.PubMedGoogle Scholar
  41. [41]
    Demangel C., Palendira U., Feng C.G., Heath A.W., Bean A.G., Britton W.J. (2001) Stimulation of dendritic cells via CD40 enhances immune responses to Mycobacterium tuberculosis infection. Infect. Immunol. 69: 2456–2461.Google Scholar
  42. [42]
    Dhodapkar M.V., Steinman R.M., Sapp M., Desai H., Fossella C., Krasovsky J., Donahoe S.M., Dunbar P.R., Cerundolo V., Nixon D.F., Bhardwaj N. (1999) Rapid generation of broad T-cell immunity in humans after a single injection of mature dendritic cells. J. Clin. Invest. 104: 173–180.PubMedGoogle Scholar
  43. [43]
    Dhodapkar M.V., Bhardwaj N. (2000) Active immunization of humans with dendritic cells. J. Clin. Immunol. 20: 167–173.PubMedGoogle Scholar
  44. [44]
    Dhodapkar M.V., Steinman R.M., Krasovsky J., Munz C., Bhardwaj N. (2001) Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J. Exp. Med. 193: 233–238.PubMedGoogle Scholar
  45. [45]
    Dhodapkar M.V., Steinman R.M. (2002) Antigen-bearing immature dendritic cells induce peptide specific CD8+ regulatory T cells in vivo in humans. Blood 100: 174–177.PubMedGoogle Scholar
  46. [46]
    Dzionek A., Fuchs A., Schmidt P., Cremer S., Zysk M., Miltenyi S., Buck D.W., Schmitz J. (2000) BDCA2, BDCA3, and BDCA4: three markers for distinct subsets of dendritic cells in human peripheral blood. J. Immunol. 165: 6037–6046.PubMedGoogle Scholar
  47. [47]
    Dzionek A., Sohma Y., Nagafune J., Cella M., Colonna M., Facchetti F., Günther G., Johnston I., Lanzavecchia A., Nagasaka T., Okada T., Vermi W., Winkels G., Yamamoto T., Zysk M., Yamaguchi Y., Schmitz J. (2001) BDCA-2, a novel plasmacytoid dendritic cell-specific type II C-type lecti., mediates antigen capture and is a potent inhibitor of interferon αß induction. J. Exp. Med. 194: 1823–1834.PubMedGoogle Scholar
  48. [48]
    Dzionek A., Inagaki Y., Okawa K., Nagafune J., Rock J., Sohma Y., Winkels G., Zysk M., Yamaguchi Y., Schmitz J. (2002) Plasmacytoid dendritic cells: from specific surface markers to specific cellular functions. Hum. Immunol. 63: 1133–1148.PubMedGoogle Scholar
  49. [49]
    Ebner S., Ratzinger G., Krosbacher B., Schmuth M., Weiss A., Reider D., Kroczek R.A., Herold M., Heufler C., Fritsch P., Romani N. (2001) Production of IL-12 by human monocyte-derived dendritic cells is optimal when the stimulus is given at the onset of maturation and is further enhanced by IL-4. J. Immunol. 166: 633–641.PubMedGoogle Scholar
  50. [50]
    Ebner S., Hofer S., Nguyen V.A., Furhapter C., Herold M., Fritsch P., Heufler C., Romani N. (2002) A novel role for IL-3: human monocytes cultured in the presence of IL-3 and IL-4 differentiate into dendritic cells that produce less IL-12 and shift Th cell responses toward a Th2 cytokine pattern. J. Immunol. 168: 6199–6207.PubMedGoogle Scholar
  51. [51]
    Feng C.G., Demangel C., Kamath A.T., Macdonald M., Britton W.J. (2001) Dendritic cells infected with Mycobacterium bovis Calmette Guerin activate CD8+ T cells with specificity for a novel mycobacterial epitope. Int. Immunol. 13: 451–458.PubMedGoogle Scholar
  52. [52]
    Ferlazzo G., Wesa A., Wei W.Z., Guli A. (1999) Dendritic cells generated from CD34+ progenitor cells or from monocytes differ in their ability to activate antigen-specific CD8+ T cells. J. Immunol. 163: 3597.PubMedGoogle Scholar
  53. [53]
    Ferlazzo G., Münz C. (2004) NK cell compartments and their activation by dendritic cells. J. Immunol. 172: 1333–1339.PubMedGoogle Scholar
  54. [54]
    Ferlazzo G., Pack M., Thomas D., Paludan C., Schmid D., Strowig T., Bougras G., Muller W.A., Moretta L., Münz C. (2004) Distinct roles of IL-12 and IL-15 in human natural killer cell activation by dendritic cells from secondary lymphoid organs. Proc. Natl. Acad. Sci. U.S.A. 101: 16606–16611.PubMedGoogle Scholar
  55. [55]
    Fong L., Brockstedt D., Benike C., Engeman E.G. (2001) Dendritic cells injected via different routes induce immunity in cancer patients. J. Immunol. 166: 4254–4259.PubMedGoogle Scholar
  56. [56]
    Foss F.M. (2002) Immunologic mechanisms of antitumor activity. Semin Oncol. 29: 5–11.PubMedGoogle Scholar
  57. [57]
    Fujii S., Shimizu K., Hemmi H., Fukui M., Bonito A.J., Chen G., Franck R.W., Tsuji M., Steinman R.M. (2006) Glycolipid α-C-galactosylceramide is a distinct inducer of dendritic cell function during innate and adaptive immune responses of mice. Proc. Natl. Acad. Sci. U.S.A. 103: 11252–11257.PubMedGoogle Scholar
  58. [58]
    Galy A., Travis M., Cen D., Chen B. (1995) Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 3: 459–473.PubMedGoogle Scholar
  59. [59]
    Geiger J., Hutchinson R., Hohenkirk L., McKenna E., Chang A., Mule J. (2000) Treatment of solid tumors in children with tumor-lysate-pulsed dendritic cells. Lancet 356: 1163–1165.PubMedGoogle Scholar
  60. [60]
    Gilboa E. (2007) DC-based cancer vaccines. J. Clin. Invest. 117: 1195–1203.PubMedGoogle Scholar
  61. [61]
    Girolomoni G., Caux C., Dezutter-Dambuyant C., Lebecque C., Ricciardi-Castagnoli P. (2002) Langerhans cells: still a fundamental paradigm for studying the immunobiology of dendritic cells. Trends Immunol. 23: 6–8.PubMedGoogle Scholar
  62. [62]
    Granelli-Piperno A., Pritsker A., Pack M., Shimelovich I., Arrighi J.-F., Park C.G., Trumpfheller C., Piguet V., Moran T.M., Steinman R.M. (2005) Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin/CD209 is abundant on macrophages in the normal human lymph node and is not required for dendritic cell stimulation of the mixed leucocyte reaction. J. Immunol. 175: 4265–4273.PubMedGoogle Scholar
  63. [63]
    Grouard G., Rissoan M.-C., Filgueira L., Durand I., Banchereau J., Liu Y.-J. (1997) The enigmatic plasmacytoid T cells develop into dendritic cells with IL-3 and CD40 ligand. J. Exp. Med. 185: 1101–1111.PubMedGoogle Scholar
  64. [64]
    Hanna J., Gonen-Gros T., Fitchett J., Rowe T., Daniels M., Arnon T.I., Gazit R., Joseph A., Schjetne K.W., Steinle A., Porgador A., Mevorach D., Goldman-Wohl D., Yagel S., LaBarre M.J., Buckner J.H., Mandelboim O. (2004) Novel APC-like properties of human NK cells directly regulate T cell activation. J. Clin. Invest. 114: 1612–1623.PubMedGoogle Scholar
  65. [65]
    Hart D.N.J. (1997) Dendritic cells: unique leukocyte populations which control the primary immune response. Blood 90: 3245–3287.PubMedGoogle Scholar
  66. [66]
    Hasebe H., Nagayama H., Sato K., Enomoto M., Takeda Y., Takahashi T.A., Hasumi K., Eriguchi M. (2000) Dysfunctional regulation of the development of monocyte-derived dendritic cells in cancer patients. Biomed. Pharmacother. 54: 291–298.PubMedGoogle Scholar
  67. [67]
    Heiser A., Coleman D., Dannull J., Yancey D., Maurice M.A., Lallas C.D., Dahm P., Niedzwiecki D., Gilboa E., Vieweg J. (2002) Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J. Clin. Invest. 109: 409–417.Google Scholar
  68. [68]
    Hemmi H., Kaisho T., Takeuchi O., Sato S., Sanjo H., Hoshino K., Horiuchi T., Tomizawa H., Takeda K., Akira S. (2002) Small antiviral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol. 3: 196–200.PubMedGoogle Scholar
  69. [69]
    Hochrein H., O’Keeffe M., Luft T., Vandenabel. S., Grumont R.J., Maraskovsky E., Shortman K. (2000) Interleukin(IL)-4 is a major regulatory cytokine governing bioactive IL-12 production by mouse and human dendritic cells. J. Exp. Med. 192: 823–834.PubMedGoogle Scholar
  70. [70]
    Hodi F.S., Mihm M.C., Soiffer R.J., Haluska F.G., Butler M., Seiden M.V., Davis T., Henry-Spires R., MacRae S., Willman A., Padera R., Jaklitsch M.T., Shankar S., Chen T.C., Korman A., Allison J.P., Dranoff G. (2003) Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated melanoma and ovarian carcinoma patients. Proc. Natl. Acad. Sci. U.S.A. 100: 4712–4717.PubMedGoogle Scholar
  71. [71]
    Homann D., Jahreis A., Wolfe T., Hughes A., Coon B., van Stipdonk M.J., Prilliman K.R., Schoenberger S.P., von Herrath M.G. (2002) CD40L blockade prevents autoimmune diabetes by induction of bitypic NK/DC regulatory cells. Immunity 16: 403–415.PubMedGoogle Scholar
  72. [72]
    Homma S., Toda G., Gong J., Kufe D., Ohno T. (2001) Preventive antitumor activity against hepatocellular carcinoma (HCC) induced by immunization with fusions of dendritic cells and HCC cells in mice. J. Gastroenterol. 36: 764–771.PubMedGoogle Scholar
  73. [73]
    Hsu F.J., Benike C., Fagnoni F., Liles T.M., Czerwinski D., Taidi B., Englemann E.G., Levy R. (1996) Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nature 392: 245–252.Google Scholar
  74. [74]
    Hunger R.E., Sieling P.A., Ochoa M.T., Sugaya M., Burdick A. E., Rea T. H., Brennan P. J., Belisle J. T., Blauvelt A., Porcelli S. A., Modlin R. L. (2004) Langerhans cells utilize CD1a and langerin to efficiently present nonpeptide antigens to T cells. J. Clin. Invest. 113: 701–708.PubMedGoogle Scholar
  75. [75]
    Inaba K., Steinman R. M. (1986) Accessory cell – T lymphocyte interactions. Antigen dependent and independent clustering. J. Exp. Med. 163: 247–261.PubMedGoogle Scholar
  76. [76]
    Jaksits S., Kriehuber E., Charbonnier A. S., Rappersberger K., Stingl G., Maurer D. (1999) CD34+ cell-derived CD14+ precursor cells develop into Langerhans cells in a TGF-β 1-dependent manner. J. Immunol. 163: 4869–4877.PubMedGoogle Scholar
  77. [77]
    Jefford M., Maraskovsky E., Cebon J., Davis I. D. (2001) The use of dendritic cells in cancer therapy. Lancet Oncol. 2: 343–353.PubMedGoogle Scholar
  78. [78]
    Jonuleit H., Giesecke-Tuettenberg A., Tuting T., Thurner-Schuler B., Stuge T. B., Paragnik L., Kandemir A., Lee P. P., Knop J., Enk A. H. (2001) A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection. Int. J. Cancer 93: 243–251.PubMedGoogle Scholar
  79. [79]
    Kadowaki N., Antonenko S., Lau J. Y.-N., Liu Y.-J. (2000) Natural interferon-α/β-producing cells link innate and adaptive immunity. J. Exp. Med. 192: 219–226.PubMedGoogle Scholar
  80. [80]
    Keller R. (2001) Dendritic cells: their significance in health and disease. Immunol. Lett. 78: 113–122.PubMedGoogle Scholar
  81. [81]
    Kelly K. A., Lucas K., Hochrein H., Metcalf D., Wu L., Shortman K. (2001) Development of dendritic cells in culture from human and murine thymic precursor cells. Cell Mol. Biol. (Noisy-le-grand). 47: 43–54.Google Scholar
  82. [82]
    Khalturina E. O., Lebedinskaya O. V., Shubina I. J., Donenko F. V., Raihlin N. T., Kiselevsky M. V. (2004) Morphological features and immunophenotype of human monocyte-derived dendritic cells. Morphology 3: 89–92.Google Scholar
  83. [83]
    Kohrgruber N., Halanek N., Groger M., Winter D., Rappersberger K., Schmitt-Egenolf M., Stingl G., Maurer D. (1999) Survival, maturation and function of CD11c- and CD11c+ peripheral blood dendritic cells are differentially regulated by cytokines. J. Immunol. 163: 3250–3259.PubMedGoogle Scholar
  84. [84]
    Koski G. K., Lyakh L. A., Rice N. R. (2001) Rapid lipopolysaccharide-induced differentiation of CD14(+) monocytes into CD83(+) dendritic cells is modulated under serum-free conditions by exogenously added IFN-γ and endogenously produced IL-10. Eur. J. Immunol. 31: 3773–3781.PubMedGoogle Scholar
  85. [85]
    Krug A., Towarowski A., Britsch S., break Rothenfusse. S., Hornung V., Bals R., Giese T., Engelmann H., Endres S., Krieg A. M., Hartmann G. (2001) Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. Eur. J. Immunol. 31: 3026–3037.PubMedGoogle Scholar
  86. [86]
    Kumagi T., Akbar S. M., Horiike N., Onji M. (2003) Increased survival and decreased tumor size due to intratumoral injection of ethanol followed by administration of immature dendritic cells. Int. J. Oncol. 23: 949–955.PubMedGoogle Scholar
  87. [87]
    Kumamoto T., Huang E. K., Paek H. J., Morita A., Matsue H., Valentini R. F., Takashima A. (2002) Induction of tumor-specific protective immunity by in situ Langerhans cell vaccine. Nat. Biotechnol. 20: 64–69.PubMedGoogle Scholar
  88. [88]
    Langerhans P. (1868) Ueber die nerven der menschlichen haut. Archiv für pathologische Anatomie un. Physiologi., und für Klinische Medicin. Berlin 44: 325–337.Google Scholar
  89. [89]
    Lapenta C., Santini S. M., Spada M., Donati S., Urbani F., Accapezzato D., Franceschini D., Andreotti M., Barnaba V., Belardelli F. (2006) IFN-alpha-conditioned dendritic cells are highly efficient in inducing cross-priming CD8(+) T cells against exogenous viral antigens. Eur. J. Immunol. 36: 2046–2060.PubMedGoogle Scholar
  90. [90]
    Lappin M. B., Weiss J. M., Delattre V., Mai B., Dittmar H., Maier C., Manke K., Grabbe S., Martin S., Simon J. C. (1999) Analysis of mouse dendritic cell migration in vivo upon subcutaneous and intravenous injection. Immunology 98: 181–188.PubMedGoogle Scholar
  91. [91]
    Lebedinskaya O. V., Akhmatova N. K., Kiselevsky M. V. (2005) The comparative characteristics of morphological and phenotypic features of mouse dendritic cells generated from bone-marrow precursors or embryonic liver. Materials of Russian Scientific Conference “Actual problems of theoretical and clinical medicine”. Perm’; GOU VPO PGMA Roszdrava: 21–24.Google Scholar
  92. [92]
    Leon B., Martinez del Hoy. G., Parrillas V., Hernandez Vargas H., Sanchez-Mateos P., Longo N., Lopez-Bravo M., Ardavin C. (2004) Dendritic cell differentiation potential of mouse monocytes: monocytes represent immediate precursors of CD8- and CD8+ splenic dendritic cells. Blood 103: 2668–2676.PubMedGoogle Scholar
  93. [93]
    Levine T. P., Chain B. M. (1992) Endocytosis by antigen presenting cells : dendritic cells are as endocytically active as other antigen presenting cells. Proc. Natl. Acad. Sci. U.S.A. 89: 8342–8346.PubMedGoogle Scholar
  94. [94]
    Lipscomb M. F., Masten B. J. (2002) Dendritic cells: immune regulators in health and disease. Physiol. Rev. 82: 97–130.PubMedGoogle Scholar
  95. [95]
    Lu W., Wu X., Lu Y., Guo W., Andrieu J. M. (2003) Therapeutic dendritic-cell vaccine for simian AIDS. Nat. Med. 9: 27–32.PubMedGoogle Scholar
  96. [96]
    Lu W., Arraes L. C., Ferreira W. T., Andrieu J. M. (2004) Therapeutic dendritic-cell vaccine for chronic HIV-1 infection. Nat. Med. 10: 1359–1365.PubMedGoogle Scholar
  97. [97]
    Ludewig B., Ehl S., Karrer U., Odermatt B., Hengartner H., Zinkernagel R. (1998) Dendritic cells efficiently induce protective antiviral immunity. J. Virol. 72: 3812–3818.PubMedGoogle Scholar
  98. [98]
    Luft T., Jefford M., Luetjens P., Toy T., Hochrein H., Masterman K.-A., Maliszewski C., Shortman K., Cebon J., Maraskovsky E. (2002) Functionally distinct dendritic cell (DC) populations induced by physiologic stimuli: prostaglandin E2 regulates the migratory capacity of specific DC subsets. Blood 100: 1362–1372.PubMedGoogle Scholar
  99. [99]
    Lutz M. B., Kukutsch N., Oglivie A. L., Rössner S., Koch F., Romani N., Schuler G. (1999) An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J. Immunol. Methods 223: 77–92.PubMedGoogle Scholar
  100. [100]
    Lyakh L. A., Koski G. K., Telford W., Gress R. E., Cohen P. A., Rice N. R. (2000) Bacterial lipopolysaccharid., TNF-α, and calcium ionophore under serum-free conditions promote rapid dendritic cell-like differentiation in CD14+ monocytes through distinct pathways that activate NF-κ. J. Immunol. 165: 3647–55.PubMedGoogle Scholar
  101. [101]
    MacDonald K. P. A., Munster D. J., Clark G. J., Dzionek A., Schmitz J., Hart D. N. J. (2002) Characterization of human blood dendritic cell subsets. Blood 100: 4512–4520.PubMedGoogle Scholar
  102. [102]
    Mailliard R. B., Alber S. M., Shen H., Watkins S. C., Kirkwood J. M., Herberman R. B., Kalinski P. (2005) IL-18-induced CD83+C\ CCR7+ NK helper cells. J. Exp. Med. 202: 941–953.Google Scholar
  103. [103]
    Marquez C., Trigueros C., Fernandez E., Toribio M. L. (1995) The development of T and non-T cell lineages from CD34+ human thymic precursors can be traced by the differential expression of CD44. J. Exp. Med. 181: 475–483.PubMedGoogle Scholar
  104. [104]
    Martin P., del Hoyo G. M., Anjuerre F., Ruiz S. R., Arias S. F., Marin A. R., Ardavin C. (2000) Concept of lymphoid versus myeloid dendritic cell lineages revisited: booth CD8α+ and CD8α- dendritic cells are generated from CD4low lymphoid-committed precursors. Blood 96: 2511–2519.PubMedGoogle Scholar
  105. [105]
    Mayordomo J. I., Zorina T., Storkus W. J., Zitvogel L., Celluzzi C., Falo L. D., Melief C. J., Ildstad S. T., Kast W. M., Deleo A. B. (1995) Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nat Med. 12: 1297–1302.Google Scholar
  106. [106]
    Mbow M., Zeidner N., Panella N., Titus R., Piesman J. (1997) Borrelia burgdoferi-pulsed dendritic cells induce a protective immune response against tick-transmitted spirochets. Infect. Immunol . 65: 3386–3390.Google Scholar
  107. [107]
    McKenna K., Beignon A.-S., Bhardwaj N. (2005) Plasmacytoid dendritic cells: linking innate and adaptive immunity. J. Virol. 79: 17–27.PubMedGoogle Scholar
  108. [108]
    Menetrier-Caux C., Thomachot M. C., Alberti L., Montamin G., Blay J. Y. (2001) IL-4 prevents the blockade of dendritic cell differentiation induced by tumor cells. Cancer Res. 61: 3096–3104.PubMedGoogle Scholar
  109. [109]
    Menges M., Baumeister T., Rössner S., Stoitzner P., Romani N., Gessner A., Lutz M. B. (2005) IL-4 supports the generation of a dendritic cell subset from murine bone marrow with altered endocytosis capacity. J. Leucoc. Biol. 77: 535–543.Google Scholar
  110. [110]
    Merad M., Sugie T., Engleman E. G., Fong L. (2002) In vivo manipulation of dendritic cells to induce therapeutic immunity. Blood 99: 1676–1682.PubMedGoogle Scholar
  111. [111]
    Metcalf D. (1997) Murine hematopoietic stem cells committed to macrophage dendritic cell formation: stimulation by Flk2 ligand with enhancement by regulators using the gp130 receptor chain. Proc. Natl. Acad. Sci. U.S.A. 94: 11552–11556.PubMedGoogle Scholar
  112. [112]
    Metlay J. P., Puré E., Steinman R. M. (1989) Distinct features of dendritic cells and anti-Ig activated B cells as stimulators of the primary mixed leukocyte reaction. J. Exp. Med. 169: 239–254.PubMedGoogle Scholar
  113. [113]
    Mizumoto N., Takashima A. (2004) CD1a and langerin: acting as more than Langerhans cell markers. J. Clin. Invest. 113: 658–660.PubMedGoogle Scholar
  114. [114]
    Morel P. A., Feili-Hariri M. (2001) How do dendritic cells prevent autoimmunity? Trends Immunol. 22: 546–547.PubMedGoogle Scholar
  115. [115]
    Morelli A. E., Thomson A. W. (2003) Dendritic cells under the spell of prostaglandins. Trends Immunol. 24: 108–111.PubMedGoogle Scholar
  116. [116]
    Morse M. A., Vredenburgh J. J., Lyerly H. K. (1999) A comparative study of the generation of dendritic cells from mobilized peripheral blood progenitor cells of patients undergoing high dose chemotherapy. J. Hematother. Stem Cell Res. 8: 577–584.PubMedGoogle Scholar
  117. [117]
    Morse M. A., Coleman R. E., Akabani G., Niehaus N., Coleman D., Lyerly H. K. (1999) Migration of human dendritic cells after injection in patients with metastatic malignancies. Cancer Res. 59: 56–58.PubMedGoogle Scholar
  118. [118]
    Mortarini R., Anichini A. (1997) Autologous dendritic cells derived from CD34+ progenitors and from monocytes are not functionally equivalent antigen-presenting cells in the induction of melan-A/MART-127–35-specific CTLs from peripheral blood lymphocytes of melanoma patients with low frequency of CTL precursors. Cancer Res. 57: 5534.PubMedGoogle Scholar
  119. [119]
    Mosca P. J., Lyerly H. K., Clay T. M., Morse M. A., Lyerly H. K. (2007) Dendritic cell vaccines. Front Biosci. 12: 4050–4060.PubMedGoogle Scholar
  120. [120]
    Mullins D. W., Sheasley S. L., Ream R. M., Bullock T. N., Fu Y. X., Engelhard V. H. (2003) Route of immunization with peptide-pulsed dendritic cells controls the distribution of memory and effector T-cells in lymphoid tissues and determines the pattern of regional tumor control. J. Exp. Med. 198: 1023–1034.PubMedGoogle Scholar
  121. [121]
    Nair S. K., Morse M., Boczkowski D., Cumming R. I., Vasovic L., Gilboa E., Lyerly H. K. (2002) Induction of tumor-specific cytotoxic T lymphocytes in cancer patients by autologous tumor RNA-transfected dendritic cells. Ann. Surg. 235: 540–549.PubMedGoogle Scholar
  122. [122]
    Nair S., McLaughlin C., Weizer A., Su Z., Boczkowski D., Dannull J., Vieweg J., Gilboa E. (2003) Injection of immature dendritic cells into adjuvant-treated skin obviates the need for ex vivo maturation. J. Immunol. 171: 6272–6285.Google Scholar
  123. [123]
    Nakamura I., Kajino K., Bamba H., Itoh F., Takikita M., Ogasawara K. (2004) Phenotypic stability of mature dendritic cells tuned by TLR or CD40 to control the efficiency of cytotoxic T cell priming. Microbiol. Immunol. 48: 211–219.PubMedGoogle Scholar
  124. [124]
    Nakano H., Yanagita M., Gunn M. D. (2001) CD11c+B220+Gr-1+ cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells. J. Exp. Med. 194: 1171–1178.PubMedGoogle Scholar
  125. [125]
    Nelson E. L., Strobl S., Subleski J., Prieto D., Kopp W. C., Nelson P. J. (1999) Cycling of human dendritic cell effector phenotypes in response to TNFα: modification of the current “maturation” paradigm and implications for in vivo immunoregulation. FASEB J. 13: 2021–2030.PubMedGoogle Scholar
  126. [126]
    Nencioni A., Brossart P. (2004) Cellular immunotherapy with dendritic cells in cancer: current status. Stem Cells 22: 501–513.PubMedGoogle Scholar
  127. [127]
    Nestle F. O., Alijagic S., Gilliet M., Sun Y., Grabbe S., Dummer R., Burg G., Schadendorf D. (1996) Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nature Med. 2: 328–332.Google Scholar
  128. [128]
    Nouri-Shirazi M., Banchereau J., Fay J., Palucka K. (2000) Dendritic cell based tumor vaccines. Immunol. Lett. 74: 5–10.PubMedGoogle Scholar
  129. [129]
    O’Keefe M., Hochrein H., Vremec D., Pooley J., Evans R., Woulfe S., Shortman K. (2002) Effects of administration of progeniopoietin 1, Flt-3 ligand, granulocyte colony-stimulating factor, and pegylated granulocyte–macrophage colony-stimulating factor on dendritic cell subsets in mice. Blood 99: 2122–2130.Google Scholar
  130. [130]
    O’Keefe M., Hochrein H., Vremec D., Scott B., Hertzog P., Tatarczuch L., Shortman K. (2003) Dendritic cell precursor populations of mouse blood: identification of the murine homologues of human blood plasmacytoid pre-DC2 and CD11c+ DC1 precursors. Blood 101: 1453–1459.Google Scholar
  131. [131]
    Oldenhove G., de Heusc. M., Urbain-Vansanten G., Urbain J., Maliszewski C., Leo O., Moser M. (2003) CD4+CD25+ regulatory T cells control T helper cell type 1 responses to foreign antigens induced by mature dendritic cells in vivo. J. Exp. Med. 198: 259–266.PubMedGoogle Scholar
  132. [132]
    Olweus J., BitMansour A., Warnke R., Thompson P. A., Carballido J., Picker L. J., Lund-Johansen F. (1997) Dendritic cell ontogeny: a human dendritic cell lineage of myeloid origin. Proc. Natl. Acad. Sci. U.S.A. 94: 12551–12556.PubMedGoogle Scholar
  133. [133]
    O’Neill D. W., Adams S., Bhardwaj N. (2004) Manipulating dendritic cell biology for the active immunotherapy of cancer. Blood 104: 2235–2246.PubMedGoogle Scholar
  134. [134]
    Palucka K. A., Taquet N., Sanchez-Chapuis F., Gluckman J. C. (1998) Dendritic cells as the terminal stage of monocyte differentiation. J. Immunol. 160: 4587–4595.PubMedGoogle Scholar
  135. [135]
    Parmiani G., Castelli C., Dalerba P., Mortarini R., Rivoltini L., Marincola F. M., Anichini A. (2002) Cancer immunotherapy with peptide-based vaccines: what have we achieved? Where are we going? J. Natl. Cancer Inst. 94: 805–818.PubMedGoogle Scholar
  136. [136]
    Paschenkov M. V., Pinegin B. V. (2001) Major properties of dendritic cells. Immunology 22: 7–16 (Original text in Russian).Google Scholar
  137. [137]
    Peguet-Navarro J., Sportouch M., Popa I., Berthier O., Schmitt D., Portoukalian J. (2003) Gangliosides from human melanoma tumors impair dendritic cell differentiation from monocytes and induce their apoptosis. J. Immunol. 170: 3488–3494.PubMedGoogle Scholar
  138. [138]
    Perruccio K., Bozza S., Montagnoli C., Bellocchio S., Aversa F., Martelli M., Bistoni F., Velardi A., Romani L. (2004) Prospects for dendritic cell vaccination against fungal infections in hematopoetic transplantation. Blood Cell Mol. Dis. 33: 248–255.Google Scholar
  139. [139]
    Phan G. Q., Yang J. C., Sherry R. M., Hwu P., Topalian S. L., Schwartzentruber D. J., Restifo N. P., Haworth L. R., Seipp C. A., Freezer L. J., Morton K. E., Mavroukakis S. A., Duray P. H., Steinberg S. M., Allison J. P., Davis T. A., Rosenberg S. A. (2003) Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl. Acad. Sci. U.S.A. 100: 8372–8377.PubMedGoogle Scholar
  140. [140]
    Piemonti L., Monti P., Zerbi A., Balzano G., Allavena P., Di Carlo V. (2000) Generation and functional characterization of dendritic cells from patients with pancreatic carcinoma with special regard to clinical applicability. Cancer Immunol. Immunother. 49: 544–550.PubMedGoogle Scholar
  141. [141]
    Pillarisetty V. G., Katz S. C., Bleier J. I., Shah A. B., DeMatteo R. P. (2005) Natural killer dendritic cells have both antigen presenting and lytic function in response to CpG produce IFN-γ via autocrine IL-12. J. Immunol. 174: 2612–2618.PubMedGoogle Scholar
  142. [142]
    Rafiq Q., Bergtold A., Clynes R. (2002) Immune complex mediated antigen presentation induces tumor immunity. J. Clin. Invest. 110; 71–79.PubMedGoogle Scholar
  143. [143]
    Randollph G. J., Beaulieu S., Lebecque S., Steinman R. M., Muller W. A. (1998) Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science 282: 480–483.Google Scholar
  144. [144]
    Randollph G. J., Inaba K., Robbiani D. F., Steinman R. M., Muller W. A. (1999) Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity 11: 753–761.Google Scholar
  145. [145]
    Res P. C., Martinez-Caseres E., Cristina Jalec. A., Staal F., Noteboom E., Weijer K., Spits H. (1996) CD34+CD38^dim cells in the human thymus can differentiate into T, natural kille., and dendritic cells but are distinct from pluriopotent stem cells. Blood 87: 5196–5206.PubMedGoogle Scholar
  146. [146]
    Res P. C., Couwenberg F., Vyth-Dreese F. A., Spits H. (1999) Expression of pTα mRNA in a committed dendritic cell precursor in the human thymus. Blood 94: 2647–2657.PubMedGoogle Scholar
  147. [147]
    Rey-Ladino J., Koochesfahani K., Zaharik M., Shen C., Brunham R. (2005) A live and inactivated Chlamydia trachomatis mouse pneumonitis strain induces the maturation of dendritic cells that are phenotypically and immunologically distinct. Infect Immunol. 73: 1568–1577.Google Scholar
  148. [148]
    Riesser C., Papesh C., Herold M., Böck G., Ramoner R., Klocker H., Bartsch G., Thurnher M. (1998) Differential deactivation of human dendritic cells by endotoxin desensitization: role of tumor necrosis factor-α and prostaglandin E2. Blood 91: 3112–3117.Google Scholar
  149. [149]
    Roitt I., Brostoff J., Male D. (2000) Immunology. Fifth edition. Mir, Moscow.Google Scholar
  150. [150]
    Romani N., Reider D., Heuer M., Ebner S., Kampgen E., Eibl B., Niederwieser D., Schuler G. (1996) Generation of mature dendritc cells from human blood: an improved method with special regard to clinical applicability. J. Immunol. Methods 196: 137–151.PubMedGoogle Scholar
  151. [151]
    Roy K. C., Bandyopadhyay G., Rakashit S., Ray M., Bandyopadhyay S. (2004) IL-4 alone without the involvement of GM-CSF transforms human peripheral blood monocytes to a CD1adim, CD83+ myeloid dendritic cell subset. J. Cell. Sci. 117: 3435–3445.PubMedGoogle Scholar
  152. [152]
    Sallusto F., Lanzavecchia A. (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte–macrophage colony-stimulating factor plus interleukin-4 and down-regulated by tumor necrosis factor α. J. Exp. Med. 179: 1109–1118.PubMedGoogle Scholar
  153. [153]
    Sallusto F., Nicolo C., De Mari. R., Corinti S., Testi R. (1996) Ceramide inhibits antigen uptake and presentation by dendritic cells. J. Exp. Med. 184: 2411–2416.PubMedGoogle Scholar
  154. [154]
    Sallusto F., Palermo B., Lenig D., Miettinen M., Matikainen S., Julkunen I., Forster R., Burgstahler R., Lipp M., Lanzavecchia A. (1999) Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur. J. Immunol. 29: 1617–1625.PubMedGoogle Scholar
  155. [155]
    Santini M. S., Lapenta C., Logozzi M., Parlato S., Spada M., Di Pucchio T., Bellardelli F. (2000) Type I interferon as a powerful adjuvant for monocyte-derived dendritic cell development and activity in vitro and in Hu-PBL-SCID mice. J. Exp. Med. 191: 1777–1788.PubMedGoogle Scholar
  156. [156]
    Saunders D., Lukas K., Ismaili J., Wu L., Maraskovsky E., Dunn A., Shortman K. (1996) Dendritic cell development in culture from thymic precursor cells in the absence of granulocyte/macrophage colony stimulating factor. J. Exp. Med. 184: 2185–2196.PubMedGoogle Scholar
  157. [157]
    Scandella E., Men Y., Gillessen S., Forster R., Groettrup M. (2002) Prostaglandin E2 is a key factor for CCR7 surface expression and migration of monocyte-derived dendritic cells. Blood 100: 1354–1361.PubMedGoogle Scholar
  158. [158]
    Schadendorf D., Ugurel S., Schuler-Thurner B., Nestle F. O., Enk A., Bröcker E. B., Grabbe S., Rittgen W., Edler L., Sucker A., Zimpfer-Rechner C., Berger T., Kamarashev J., Burg G., Jonuleit H., Tüttenberg A., Becker J. C., Keikavoussi P., Kämpgen E., Schuler G. (2006) Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG. Ann Oncol. 17: 563–570.PubMedGoogle Scholar
  159. [159]
    Schakel K., Mayer E., Federle C., Schmitz M., Riethmuller G., Rieber E. P. (1998) A novel dendritic cell population in human blood: one-step immunomagnetic isolation by a specific mAb (M-DC8) and in vitro priming of cytotoxic T lymphocytes. Eur. J. Immunol. 28: 4084–4093.PubMedGoogle Scholar
  160. [160]
    Schleicher U., Hesse A., Bogdan C. (2005) Minute numbers of contaminant CD8+ T cells or CD11b+CD11c+ NK cells are the source of IFN-γ in IL-12/IL-18-stimulated mouse macrophage populations. Blood 105: 1319–1328.PubMedGoogle Scholar
  161. [161]
    Scholler N., Hayden-Ledbetter M., Hellström K.-E., Hellström I., Ledbetter J. A. (2001) CD83 is a sialic acid-binding Ig-like lectin (Siglec) adhesion receptor that binds monocytes and a subset of activated CD8+ T cells. J. Immunol. 166: 3865–3872.PubMedGoogle Scholar
  162. [162]
    Scholler N., Hayden-Ledbetter M., Dahlin A., Hellström I., Hellström K.-E., Ledbetter J. A. (2002) Cutting edge: CD83 regulates the development of cellular immunity. J. Immunol. 168: 2599–2602.PubMedGoogle Scholar
  163. [163]
    Schreus M. W. J., Eggert A. A. O., De Boer A. J., Figdor C. G., Adema G. J. (1999) Generation and functional characterization of mouse monocyte-derived dendritic cells. Eur. J. Immunol. 29: 2835–2841.Google Scholar
  164. [164]
    Shaw J., Grund V., Durling L., Crane D., Caldwell H. (2002) Dendritic cells pulsed with a recombinant chlamidial major outer membrane protein antigen elicit a CD4(+) type 2 rather than type 1 immune response that is not protective. Infect Immunol. 70: 1097–1105.Google Scholar
  165. [165]
    Shen W., Ladisch S. (2002) Ganglioside GD1a impedes lipopolysaccharide-induced maturation of human dendritic cells. Cell Immunol. 220: 125–133.PubMedGoogle Scholar
  166. [166]
    Shubina I. J., Lebedinskaya O. V., Akhmatova N. K., Kiselevsky M. V. (2005) Potential sources of dendritic cells for generation of anti-cancer vaccines. Med. Immunol. 7: 15 (Original text in Russian).Google Scholar
  167. [167]
    Shurin G. V., Shurin M. R., Bykovskaia S., Lotze M. T., Barksdale E. M. Jr. (2001) Neuroblastoma-derived gangliosides inhibit dendritic cell generation and function. Cancer Res. 61: 363–369.PubMedGoogle Scholar
  168. [168]
    Smyth M. J. (2006) Imatinib mesylate – uncovering a fast track to adaptive immunity. N. Engl. J. Med. 354: 2282–2284.PubMedGoogle Scholar
  169. [169]
    Sombroek M. J., Stam A. J., Masterson A. J., Lougheed S. M., Schakeel M. J., Meijer C. J., Pinedo H. M., van den Eertwegh A. J., Scheper R. J., de Gruijl T. D. (2002) Prostanoids play a major role in the primary tumor induced inhibition of dendritic cell differentiation. J. Immunol. 168: 4333–4343.PubMedGoogle Scholar
  170. [170]
    Spits H., Cowenberg F., Bakker A. Q., Weijer K., Uittenbogaart C. H. (2000) Id2 and Id3 inhibit development of CD34+ stem cells into predendritic cell (Pre-DC)2 but not into pre-DC1: evidence for a lymphoid origin of pre-DC2. J. Exp. Med. 192: 115–1784.Google Scholar
  171. [171]
    Sporri R., Reise Sousa C. (2005) Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function. Nat. Immunol. 6: 163–170.PubMedGoogle Scholar
  172. [172]
    Steinman R. M., Cohn Z. A. (1973) Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantisation, tissue distribution. J. Exp. Med. 137: 1142–1162.PubMedGoogle Scholar
  173. [173]
    Steinman R. M., Witmer M. D. (1978) Lymphoid dendritic cells are potent stimulators of the primary mixed leucocyte reaction in mice. Proc. Natl. Acad. Sci. U.S.A. 75: 5132–5136.PubMedGoogle Scholar
  174. [174]
    Steinman R. M., Pope M. (2002) Exploiting dendritic cells to improve vaccine efficacy. J. Clin. Invest. 109: 1519–1526.PubMedGoogle Scholar
  175. [175]
    Su H., Messer R., Whitmire W., Fischer E., Portis J., Caldwell H. (1998) Vaccination against chlamydial genital tract infection after immunization with dendritic cells pulsed ex vivo with nonviable Chlamydiae. J. Exp. Med. 7: 809–818.Google Scholar
  176. [176]
    Su Z., Dannull J., Heiser A., Yancey D., Pruitt S., Madden J., Coleman D., Niedzwiecki D., Gilboa E., Vieweg J. (2003) Immunological and clinical responses in metastatic renal cancer patients vaccinated with tumor RNA-transfected dendritic cells. Cancer Res. 63: 2127–2133.PubMedGoogle Scholar
  177. [177]
    Sutmuller R. P. M., van Duivenvoorde L. M., van Elsas A., Schumacher T. N. M., Wildenberg M. E., Allison J. P., Toes R. E. M., Offringa R., Melief C. J. M. (2001) Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25+ regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J. Exp. Med. 194: 823–832.PubMedGoogle Scholar
  178. [178]
    Taieb J., Chaput N., Menard C., Apetoh L., Ullrich E., Bonmort M., Pequignot M., Casares N., Terme M., Flament C., Opolon P., Lecluse Y., Metivier D., Tomasello E., Vivier E., Ghiringhelli F., Martin F., Klatzmann D., Poynard T., Tursz T., Raposo G., Yagita H., Ryffel B., Kroemer G., Zitvogel L. (2006) A novel dendritic cell subset involved in tumor immunosurveillance. Nat. Med. 12: 214–219.PubMedGoogle Scholar
  179. [179]
    Tanaka H., Tanaka J., Kjaergaard J., Shu S. (2002) Depletion of CD4+CD25+ regulatory cells augments the generation of specific immune T cells in tumor-draining lymph nodes. J. Immunother. 25: 207–217.PubMedGoogle Scholar
  180. [180]
    Thomas R., Lipsky P. E. (1994) Human peripheral blood dendritic cell subsets. Isolation and characterization of precursor and mature antigen-presenting cells. J. Immunol. 153: 4016–4028.PubMedGoogle Scholar
  181. [181]
    Thurner B., Haendle I., Roder C., Dieckmann D., Keikavoussi P., Jonuleit H., Bender A., Maszek C., Schreiner D., von den Driesh P., Brocker E. B., Steinman R. M., Enk A., Kampgen E., Schuler G. (1999) Vaccination with mage-3A1 peptide-pulsed matur., monocyte derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J. Exp. Med. 190: 1669–1678.PubMedGoogle Scholar
  182. [182]
    Thurner M., Zelle-Rieser C., Ramoner R., Bartsch G., Holtl L. (2001) The disabled dendritic cell. FASEB J. 15: 1054–1061.Google Scholar
  183. [183]
    Traver D., Akashi K., Manz M., Merad M., Miyamoto T., Engleman E. G., Weissman I. L. (2000) Development of CD8α-positive dendritic cells from a common myeloid progenitor. Science 290: 2152–2154.PubMedGoogle Scholar
  184. [184]
    Triozzi P. L., Khurram R., Aldrich W. A., Walker M. J., Kim J. A., Jaynes S. (2000) Intratumoral injection of dendritic cells derived in vitro in patients with metastatic cancer. Cancer 89: 2646–2653.PubMedGoogle Scholar
  185. [185]
    van Elsa. A., Sutmuller R. P. M., Hurwitz A. A., Ziskin J., Villasenor J., Medema J.–P., Overwijk W. W., Restifo N. P., Melief C. J. M., Offringa R., Allson J. P. (2001) Elucidating the autoimmune and antitumor effector mechanisms of a treatment based on cytotoxic T-lymphocyte antigen-4 blockade in combination with a B16 melanoma vaccine: comparison of prophylaxis and therapy. J. Exp. Med. 194: 481–489.Google Scholar
  186. [186]
    van Hal. T., Wolpert E. Z., van Veele. P., Laban S., van der Veer M., Roseboom M., Bres S., Grufman P., de R. A., Meiring H., de Jong A., Franken K., Teixeira A., Valentijn R., Drijfhout J. W, Koning F., Camps M., Ossendorp F., Karre K., Ljunggren H. G., Melief C. J., Offringa R. (2006) Selective cytotoxic T-lymphocyte targeting of tumor immune escape variants. Nat. Med. 12: 417–424.Google Scholar
  187. [187]
    Verhasselt V., Buelens C., Willems F., De Groote D., Haeffner-Cavaillon N., Goldman M. (1997) Bacterial lipopolysaccharide stimulates the production of cytokines and the expression of costimulatory molecules by human peripheral blood dendritic cells: evidence for a soluble CD14-dependent pathway. J. Immunol. 158: 2919–2925.PubMedGoogle Scholar
  188. [188]
    von Stebu. E., Belkaid Y., Nguen B., Cushing M., Sacks D., Udey M. (2000) Leishmania major-infected murine langerhans cell-like dendritic cells from susceptible mice release IL-12 after infection and vaccinate against experimental cutaneous Leishmaniasis. Eur. J. Immunol. 30: 3498–3506.Google Scholar
  189. [189]
    de Vries I. J. M., Krooshoop D. J. E. B., Scharenborg N. M., Lesterhuis W. J., Diepstra J. H. S., van Muijen G. N. P., Strijk S. P., Ruers T. J., Boerman O. C., Oyen W. J. G., Adema G. J., Punt C. J. A., Figdor C. G. (2003) Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state. Cancer Res. 63: 12–17.PubMedGoogle Scholar
  190. [190]
    Wallet M. A., Sen P., Tisch R. (2005) Immunoregulation of dendritic cells. Clin. Med. Res. 3: 166–175.PubMedGoogle Scholar
  191. [191]
    Wilson N. S., El-Sukkari D., Belz G. T., Smith C. M., Steptoe R. J., Heath W. R., Shortman K., Villadangos J. A. (2003) Most lymphoid organ dendritic cell types are phenotypically and functionally immature. Blood 102: 2187–2194.PubMedGoogle Scholar
  192. [192]
    Wilson N. S., El-Sukkari D., Villadangos J. A. (2004) Dendritic cells constitutively present self antigens in their immature state in vivo and regulate antigen presentation by controlling the rates of MHC class II synthesis and endocytosis. Blood 103: 2187–2195.PubMedGoogle Scholar
  193. [193]
    Wolfl M., Batten W. Y., Posovszky C., Bernhard H., Berthold F. (2002) Gangliosides inhibit the development from monocytes to dendritic cells. Clin. Exp. Immunol. 130: 441–448.PubMedGoogle Scholar
  194. [194]
    Worgall S., Kikuchi T., Singh R., Martushova K., Lande L., Crystal R. (2001) Protection against pulmonary infection with Pseudomonas aerogenosa following immunization with P. aerogenosa-pulsed dendritic cells. Infect. Immunol. 69: 4521–4527.Google Scholar
  195. [195]
    Wu L., Scollay R., Egerton M., Pearse M., Spangrude G. J., Shortman K. (1991) CD4 expressed on earliest T-lineage precursor cells in the adult murine thymus. Nature 349: 71–74.PubMedGoogle Scholar
  196. [196]
    Wu L., Li C.-L., Shortman K. (1996) Thymic dendritic cell precursors: relationship to the T-lymphocyte lineage and phenotype of the dendritic cell progeny. J. Exp. Med. 184: 903–911.PubMedGoogle Scholar
  197. [197]
    Wu L., D’Amico A., Hochrein H., O’Keefe M., Shortman K., Lucas K. (2001) Development of thymic and splenic dendritic cell populations from different hematopoietic precursors. Blood 98: 3376–3382.PubMedGoogle Scholar
  198. [198]
    Wu D. Y., Segal N. H., Sidobre S., Kronenberg M., Chapman P. B. (2003) Cross-presentation of disialoganglioside GD3 to natural killer T cells. J. Exp. Med. 198: 173–181.PubMedGoogle Scholar
  199. [199]
    Xie J., Qian J., Wang S., Freeman III M. E., Epstein J., Yi Q. (2003) Novel and detrimental effects of lipopolysaccharide on in vitro generation of immature dendritic cells: involvement of mitogen-activated protein kinase p38. J. Immunol. 171: 4792–4800.PubMedGoogle Scholar
  200. [200]
    Yanagawa Y., Onoé K. (2003) CCR7 ligands induce rapid endocytosis in mature dendritic cells with concomitant up-regulation of Cdc42 and Rac activities. Blood 101: 4923–4929.PubMedGoogle Scholar
  201. [201]
    Zhang Y., Harada A., Wang J. B., Zhang Y. Y., Hashimoto S., Naito M., Matsushima K. (1998) Bifurcated dendritic cell differentiation in vitro from murine lineage phenotype negative c-kit+ bone marrow hematopoietic progenitor cells. Blood 92: 118–128.PubMedGoogle Scholar
  202. [202]
    Zhang Y., Zhang Y. Y., Ogata M., Chen P., Harada A., Hashimoto S., Matsushima K. (1999) Transforming growth factor β1 polarizes murine hematopoietic progenitor’ cells to generate Langerhans cell-like dendritic cells through a monocyte/macrophage’ differentiation pathway. Blood 93: 1208–1220.PubMedGoogle Scholar
  203. [203]
    Zhong H., Shurin M. R., Han B. (2007) Optimizing dendritic cell-based immunotherapy for cancer. Expert Rev. Vaccines 6: 333–345.PubMedGoogle Scholar
  204. [204]
    Zhou L.-J., Tedder T. F. (1996) CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells. Proc. Natl. Acad. Sci. U.S.A. 93: 2588–2592.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Irina O. Chikileva
    • 1
  • Natalia Yu. Anisimova
    • 1
  • Olga V. Lebedinskaya
    • 2
  • Mikhail V. Kiselevsky
    • 1
  • Vyacheslav M. Abramov
    • 3
  1. 1.Laboratory of Cell ImmunityNN Blokhin Russian Cancer Research Center RAMSMoscowRussia
  2. 2.Department of Histology,Embryology and CytologyEAVagner Perm Medical AcademyPermRussia
  3. 3.Institute of Immunological EngineeringMoscowRussia

Personalised recommendations