“Flowering Walnuts in the Wood” and Other Bases for Seasonal Climate Forecasting

  • Simon J. Mason


Although it is impossible to forecast the weather more than a few days in advance, the science of seasonal climate forecasting is premised upon an ability to predict the general weather conditions over a prolonged period of time, without trying to predict the precise weather at any specific time during that period. The forecasting is possible only because sometimes, and primarily within tropical latitudes, the atmosphere is sensitive to unusual conditions at the earth’s surface, and especially at the sea surface. El Niño, and its counterpart La Niña, are the primary examples of such forcing conditions: during El Niño events, much of the equatorial Pacific Ocean is unusually hot (cold during La Niña), and the consequent changes to the heat and moisture supplied to the atmosphere can disrupt weather conditions in many parts of the globe. However, all seasonal climate forecasts involve a great deal of uncertainty, and a key aspect of forecasting at such time scales is to estimate the uncertainty in the prediction reliably. There are two sources of uncertainty in seasonal climate forecasting: the atmosphere is nowhere completely forced by conditions at the surface, but is free to vary according to its own internal dynamics; and the models used to predict the climate system are imperfect. These two sources of uncertainty are addressed by producing a set of model predictions: different initial weather conditions are used to represent the uncertainty from the internal dynamics, and different models to account for the uncertainties arising from imperfect model physics.


Seasonal climate forecasting El Niño La Niña uncertainty 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allan, R. J., J. A. Lindesay, and D. E. Parker (1996). El Niño – Southern Oscillation and Climatic Variability. CSIRO Publishing, Collingwood, 405 pp.Google Scholar
  2. Barnston, A. G., H. M. van den Dool, S. E. Zebiak, T. P. Barnett, M. Ji, D. R. Rodenhuis, M. A. Cane, A. Leetmaa, N. E. Graham, C. R. Ropelewski, V. E. Kousky, E. A. O’Lenic, and R. E. Livezey (1994). Long-lead seasonal forecasts – where do we stand? Bulletin of the American Meteorological Society 75: 2097–2114.CrossRefGoogle Scholar
  3. Barnston, A. G., S. J. Mason, L. Goddard, D. G. DeWitt, and S. E. Zebiak (2003). Multi-model ensembling in seasonal climate forecasting at IRI. Bulletin of the American Meteorological Society 84: 1783–1796.CrossRefGoogle Scholar
  4. Barnston, A. G., A. Kumar, L. Goddard, and M. P. Hoerling (2005). Improving seasonal prediction practices through attribution of climate variability. Bulletin of the American Meteorological Society 86: 59–72.CrossRefGoogle Scholar
  5. Barsugli, J., J. S. Whitaker, A. F. Loughe, P. D. Sardeshmukh, and Z. Toth (1999). The effect of the 1997/98 El Niño on individual large-scale weather events. Bulletin of the American Meteorological Society 80: 1399–1411.CrossRefGoogle Scholar
  6. Bengtsson, L., U. Schlese, E. Roeckner, M. Latif, T. P. Barnett, and N. E. Graham (1993). A two-tiered approach to long-range climate forecasting. Science 261: 1026–1209.CrossRefPubMedGoogle Scholar
  7. Bjerknes, J. (1966). A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus 18: 820–829.Google Scholar
  8. Bjerknes, J. (1969). Atmospheric teleconnections from the equatorial Pacific. Monthly Weather Review 97: 163–172.CrossRefGoogle Scholar
  9. Bjerknes, J. (1972). Large-scale atmospheric response to the 1964–65 Pacific equatorial warming. Journal of Physical Oceanography 2: 212–217.CrossRefGoogle Scholar
  10. Doblas-Reyes, F. J., R. Hagedorn, and T. N. Palmer (2005). The rationale behind the success of multi-model ensembles in seasonal forecasting – II. Calibration and combination. Tellus 57A: 234–252.Google Scholar
  11. Glantz, M. H., R. W. Katz, and N. Nicholls (1991). Teleconnections Linking Worldwide Climate Anomalies: Scientific Basis and Societal Impact. Cambridge University Press, Cambridge, 545 pp.Google Scholar
  12. Goddard, L., S. J. Mason, S. E. Zebiak, C. F. Ropelewski, R, Basher, and M. A. Cane (2001). Current approaches to seasonal-to-interannual climate predictions. International Journal of Climatology 21: 1111–1152.CrossRefGoogle Scholar
  13. Graham, R. J., A. D. L. Evans, K. R. Mylne, M. S. J. Harrison, and K. B. Robertson (2000). An assessment of seasonal predictability using atmospheric general circulation models. Quarterly Journal of the Royal Meteorological Society 126: 2211–2240.CrossRefGoogle Scholar
  14. Graham, R. J., M. Gordon, P. J. McLean, S. Ineson, M. R. Huddleston, M. K. Davey, A. Brookshaw and R. T. H. Barnes (2005). A performance comparison of coupled and uncoupled versions of the Met Office seasonal prediction general circulation model. Tellus 57A: 320–319.Google Scholar
  15. Guérémy, J. -F., M. Déqué, A. Braun, and J. -P. Piedelièvre (2005). Actual and potential skill of seasonal predictions using the CNRM contribution to DEMETER: coupled versus uncoupled model. Tellus 57A: 308–319.Google Scholar
  16. Hagedorn R., F. J. Doblas-Reyes, and T. N. Palmer (2005). The rationale behind the success of multi-model ensembles in seasonal forecasting – I. Basic concept. Tellus 57A: 219–233.Google Scholar
  17. Harrison, M. S. J. (2005). The development of seasonal and inter-annual climate forecasting. Climatic Change 70: 201–220.CrossRefGoogle Scholar
  18. Inwards, R. (1994). Weather Lore: A Collection of Proverbs, Sayings and Rules Concerning the Weather. Senate, London, 190 pp.Google Scholar
  19. Kumar, A. and M. P. Hoerling (1995). Prospects and limitations of seasonal atmospheric GCM predictions. Bulletin of the American Meteorological Society 76: 335–345.CrossRefGoogle Scholar
  20. Kumar, A., M. P. Hoerling, and A. G. Barnston (2001). Seasonal predictions, probabilistic verifications, and ensemble size. Journal of Climate 14: 1671–1676.CrossRefGoogle Scholar
  21. Marriott, P. J. (1981). Red Sky at Night Shepherd’s Delight!: Weather Lore of the English Countryside; 1900 Sayings Explained and Tested. Sheba Books, Oxford, 376 pp.Google Scholar
  22. Mason, S. J. (2008). From dynamical predictions to seasonal forecasts. In: Understanding and Adapting to Climate Variability, A. Trocolli, M. S. J. Harrison, D. L. T. Anderson, and S. J. Mason (eds.). Springer Academic Publishers, Dordrecht, in press.Google Scholar
  23. Mason, S. J. and L. Goddard (2001). Probabilistic precipitation anomalies associated with ENSO. Bulletin of the American Meteorological Society 82: 619–638.CrossRefGoogle Scholar
  24. Mason, S. J. and G. M. Mimmack (2002). Comparison of some statistical methods of probabilistic forecasting of ENSO. Journal of Climate 15: 8–29.CrossRefGoogle Scholar
  25. Mason, S. J., L. Goddard, N. E. Graham, E. Yulaeva, L. Sun and P. A. Arkin (1999). The IRI seasonal climate prediction system and the 1997/1998 El Niño event. Bulletin of the American Meteorological Society 80: 1853–1873.CrossRefGoogle Scholar
  26. Namias, J. (1991). Spring and summer 1988 drought over the contiguous United States – causes and prediction. Journal of Climate 4: 54–65.CrossRefGoogle Scholar
  27. Orlove, B. S., J. C. H. Chiang, and M. A. Cane (2000). Forecasting Andean rainfall and crop yield from the influence of El Niño on Pleiades visibility. Nature 403: 68–71.CrossRefPubMedGoogle Scholar
  28. Orlove, B. S., J. C. H. Chiang, and M. A. Cane (2002). Ethnoclimatology in the Andes. American Scientist 90: 428–435.Google Scholar
  29. Palmer, T. N. and D. L. T. Anderson (1994). The prospects for seasonal forecasting – a review paper. Quarterly Journal of the Royal Meteorological Society 120: 755–793.Google Scholar
  30. Palmer, T. N., A. Alessandri, U. Anderson, P. Cantelaube, M. Davey, P. Délécluse, M. Déqué, E. Díez, F. J. Doblas-Reyes, H. Feddersen, R. Graham, S. Gualdi, J. -F. Guérémy, R. Hagedorn, M. Hoshen, N. Keenlyside, M. Latif, A. Lazar, E. Maisonnave, V. Marletto, A. P. Morse, B. Orfila, P. Rogel, J. -M. Terres, and M. C. Thomson (2004). Development of a European ensemble system for seasonal to inter-annual prediction (DEMETER). Bulletin of the American Meteorological Society 85: 853–872.CrossRefGoogle Scholar
  31. Rajagopalan, B., U. Lall, and S. E. Zebiak (2002). Categorical climate forecasts through regularization and optimal combination of multiple GCM ensembles. Monthly Weather Review 130: 1792–1811.CrossRefGoogle Scholar
  32. Robertson, A. W., U. Lall, S. E. Zebiak, and L. Goddard (2004). Improved combination of multiple atmospheric GCM ensembles for seasonal prediction. Monthly Weather Review 132: 2732–2744.CrossRefGoogle Scholar
  33. Roeckner, E., K. Arpe, L. Bengtsson, M. Christoph, M. Claussen, L. Dümenil, M. Esch, M. Giorgetta, U. Schlese, and U. Schulzweida (1996). The atmospheric circulation model ECHAM-4: Model description and simulation of present-day climate. MPI-Rep. 218, MPI für Meteorologie, Hamburg, 90 pp.Google Scholar
  34. Saha, S., S. Nadiga, C. Thiaw, J. Wang, W. Wang, Q. Zhang, H. M. van den Dool, H. -L. Pan, S. Moorthi, D. Behringer, D. Stokes, M. Peña, S. Lord, G. White, W. Ebisuzaki, P. Peng and P. Xie (2006). The NCEP Climate Forecast System. Journal of Climate 19: 3483–3517.CrossRefGoogle Scholar
  35. Shukla, J. (1998). Predictability in the midst of chaos: a scientific basis for climate forecasting. Science 282: 728–731.CrossRefPubMedGoogle Scholar
  36. Stockdale, T. N., D. L. T. Anderson, J. O. S. Alves, and M. Balmaseda (1998). Global seasonal rainfall forecasts using a coupled ocean-atmosphere model. Nature 392: 370–373.CrossRefGoogle Scholar
  37. Thomson, M. C., F. J. Doblas-Reyes, S. J. Mason, R. Hagedorn, S. J. Connor, T. Phindela, A. P. Morse, and T. N. Palmer (2006). Multi-model ensemble seasonal climate forecasts for malaria early warning. Nature 439: 576–579.CrossRefPubMedGoogle Scholar
  38. Uppala, S. M., P. W. Kållberg, A. J. Simmons, U. Andrae, V. da Costa Bechtold, M. Fiorino, J. K. Gibson, J. Haseler, A. Hernandez, G. A. Kelly, X. Li, K. Onogi, S. Saarinen, N. Sokka, R. P. Allan, E. Andersson, K. Arpe, M. A. Balmaseda, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, S. Caires, F. Chevallier, A. Dethof, M. Dragosavac, M. Fisher, M. Fuentes, S. Hagemann, E. Hólm, B. J. Hoskins, L. Isaksen, P. A. E. M. Janssen, R. Jenne, A. P. McNally, J. -F. Mahfouf, J.- J. Morcrette, N. A. Rayner, R. W. Saunders, P. Simon, A. Sterl, K. E. Trenberth, A. Untch, D. Vasiljevic, P. Viterbo, and J. Woollen (2005). The ERA-40 re-analysis. Quarterly Journal of the Royal Meteorological Society 131, 2961–3012, doi:10.1256/qj.04.176.CrossRefGoogle Scholar
  39. van den Dool, H. M. (1994). Searching for analogues: how long must one wait? Tellus 46A: 314–324.Google Scholar
  40. van den Dool, H. M., J. Huang, and Y. Fan (2003). Performance and analysis of the constructed analogue method applied to US soil moisture over 1981–2001. Journal of Geophysical Research 108: D08617, doi:10.1029/2002JD003114.CrossRefGoogle Scholar
  41. Walker, N. D. and J. A. Lindesay (1989). Preliminary observations of oceanic influences on the February–March 1988 floods in central South Africa. South African Journal of Science 85: 164–169.Google Scholar
  42. Ward, M. N. and C. K. Folland (1991). Prediction of seasonal rainfall in the north Nordeste of Brazil using eigenvectors of sea-surface temperatures. International Journal of Climatology 11: 711–743.CrossRefGoogle Scholar
  43. Zebiak, S. E. (1999). El Niño and the science of climate prediction. Consequences 5: 3–15.Google Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Simon J. Mason
    • 1
  1. 1.International Research Institute for Climate and SocietyThe Earth Institute at Columbia UniversityPalisadesUSA

Personalised recommendations