Genetic and Proteomic Studies of Sulfur Oxidation in Chlorobium tepidum (syn. Chlorobaculum tepidum)

  • Leong-Keat Chan
  • Rachael Morgan-Kiss
  • Thomas E. Hanson
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 27)

The oxidation of reduced sulfur compounds is perhaps the most poorly understood physiological process carried out by the green sulfur bacteria (the Chlorobiaceae). My laboratory is testing models of sulfur oxidation pathways in the model system Chlorobium tepidum (ATCC 49652 syn. Chlorobaculum tepidum (Imhoff, 2003) ) by the creation and analysis of mutant strains lacking specific gene products. The availability of a complete, annotated genome sequence for C. tepidum enables this approach, which will specify targets for biochemical analysis by indicating which genes are important in an organismal context. This is particularly important when several potentially redundant enzymes are encoded by the genome for a particular reaction, such as sulfide oxidation. Additionally, we are using proteomics approaches to define the subcellular locations of proteins involved in sulfur oxidation pathways. The results produced by this research will refine models of anaerobic sulfur oxidation pathways and their integration into the global physiology of the Chlorobiaceae.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aivaliotis M, Corvey C, Tsirogianni I, Karas M and Tsiotis G (2004a) Membrane proteome analysis of the green-sulfur bacterium Chlorobium tepidum. Electrophoresis 25: 3468–3474PubMedCrossRefGoogle Scholar
  2. Aivaliotis M, Neofotistou E, Remigy HW, Tsimpinos G, Lustig A, Lottspeich F and Tsiotis G (2004b) Isolation and characterization of an outer membrane protein of Chlorobium tepidum. Photosynth Res 79: 161–166PubMedCrossRefGoogle Scholar
  3. Aivaliotis M, Haase W, Karas M and Tsiotis G (2006a) Proteomic analysis of chlorosome-depleted membranes of the green sulfur bacterium Chlorobium tepidum. Proteomics 6: 217–232PubMedCrossRefGoogle Scholar
  4. Aivaliotis M, Karas M and Tsiotis G (2006b) High throughput two-dimensional blue-native electrophoresis: A tool for functional proteomics of cytoplasmatic protein complexes from Chlorobium tepidum. Photosynth Res 88: 143–157PubMedCrossRefGoogle Scholar
  5. An JY and Kim BW (2000) Biological desulfurization in an optical-fiber photobioreactor using an automatic sunlight collection system. J Biotechnol 80: 35–44PubMedCrossRefGoogle Scholar
  6. Baik SC, Kim KM, Song SM, Kim DS, Jun JS, Lee SG, Song JY, Park JU, Kang HL, Lee WK, Cho MJ, Youn HS, Ko GH and Rhee KH (2004) Proteomic analysis of the sarcosine-insoluble outer membrane fraction of Helicobacter pylori strain 26695. J Bacteriol 186: 949–955PubMedCrossRefGoogle Scholar
  7. Baneras L, Rodriguez-Gonzalez J and Garcia-Gil LJ (1999) Contribution of photosynthetic sulfur bacteria to the alkaline phosphatase activity in anoxic aquatic ecosystems. Aquat Microb Ecol 18: 15–22CrossRefGoogle Scholar
  8. Bardischewsky F and Friedrich CG (2001) The shxVW locus is essential for oxidation of inorganic sulfur and molecular hydrogen by Paracoccus pantotrophus GB17: A novel function for lithotrophy. FEMS Microbiol Lett 202: 215–220PubMedCrossRefGoogle Scholar
  9. Bartsch R, Newton G, Sherril C and Fahey R (1996) Glutathione amide and its perthiol in anaerobic sulfur bacteria. J Bacteriol 178: 4742–4746PubMedGoogle Scholar
  10. Basu R, Klasson KT, Clausen EC and Gaddy JL (1994) Removal of carbonyl sulfide and hydrogen sulfide from synthesis gas by Chlorobium thiosulfatophilum. Appl Biochem Biotechnol 45: 787–797CrossRefGoogle Scholar
  11. Beatty JT, Overmann J, Lince MT, Manske AK, Lang AS, Blankenship RE, Van Dover CL, Martinson TA and Plumley FG (2005) An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proc Natl Acad Sci USA 102: 9306–9310PubMedCrossRefGoogle Scholar
  12. Bloch PL, Phillips TA and Neidhardt FC (1980) Protein identifications of O’Farrell two-dimensional gels: Locations of 81 escherichia coli proteins. J Bacteriol 141: 1409–1420PubMedGoogle Scholar
  13. Blöthe M and Fischer U (2001) Occurrence of polysulfides during anaerobic sulfide oxidation by whole cells and spheroplasts of Chlorobium vibrioforme and Allochromatium minutissimum and photooxidation of sulfite. 101st General Meeting of the American Society for Microbiology 101: 465Google Scholar
  14. Borrego C and Garcia-Gil J (1995) Photosynthetic oxidation of MnS and FeS by Chlorobium spp. Microbiologia 11: 351–358PubMedGoogle Scholar
  15. Brune DC (1989) Sulfur oxidation by phototrophic bacteria. Biochim Biophys Acta 975: 189–221PubMedCrossRefGoogle Scholar
  16. Brune DC (1995) Sulfur compounds as photosynthetic electron donors. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, 847–870, Vol 2 of Advances in Photosynthesis and Respiration (Govindjee ed.) Kluwer Academic (now Springer), DordrechtGoogle Scholar
  17. Bryant DA, Vassilieva EV, Frigaard NU and Li H (2002) Selective protein extraction from Chlorobium tepidum chlorosomes using detergents. Evidence that CsmA forms multimers and binds bacteriochlorophyll a. Biochemistry 41: 14403–14411PubMedCrossRefGoogle Scholar
  18. Buchanan BB and Arnon DI (1990) A reverse Krebs cycle in photosynthesis: Consensus at last. Photosynth Res 24: 47–53PubMedCrossRefGoogle Scholar
  19. Buonfiglio V, Polidoro M, Flora L, Citro G, Valenti P and Orsi N (1993) Identification of two outer membrane proteins involved in the oxidation of sulphur compounds in Thiobacillus ferrooxidans. International Symposium on Advances on Biohydrometallurgy: Microbiology and Applications 11: 43–50Google Scholar
  20. Butow B and Bergsteinbendan T (1992) Occurrence of Rhodopseudomonas palustris and Chlorobium phaeobacteroides blooms in Lake Kinneret. Hydrobiologia 232: 193–200Google Scholar
  21. Castenholz RW, Bauld J and Jorgenson BB (1990) Anoxygenic microbial mats of hot springs – thermophilic Chlorobium sp. FEMS Microbiol Ecol 74: 325–336CrossRefGoogle Scholar
  22. Chan LK, Weber TS, Morgan-kiss RM, and Hanson TE (2007) A genomic region required for phototrophic thiosulfate oxidation in the green sulfur bacterium chlorobium tepidum (syn. Chlorobaculum tepidum). Microbiology In pressGoogle Scholar
  23. Cho SH, Na JU, Youn H, Hwang CS, Lee CH and Kang SO (1998) Tepidopterin, 1-o-(l-threo-biopterin-2′-yl)-beta-n-acetylglucosamine from Chlorobium tepidum. Biochim Biophys Acta 1379: 53–60PubMedGoogle Scholar
  24. Chung S, Frank G, Zuber H and Bryant DA (1994) Genes encoding two chlorosome components from the green sulfur bacteria Chlorobium vibrioforme strain 83271d and Chlorobium tepidum. Photosynth Res 41: 261–275CrossRefGoogle Scholar
  25. Chung S, Shen G, Ormerod J and Bryant DA (1998) Insertional inactivation studies of the csmA and csmC genes of the green sulfur bacterium Chlorobium vibrioforme 8327: The chlorosome protein CsmA is required for viability but CsmC is dispensable. FEMS Microbiol Lett 164: 353–361PubMedCrossRefGoogle Scholar
  26. Dahl C, Engels S, Pott-Sperling AS, Schulte A, Sander J, Lübbe Y, Deuster O and Brune DC (2005) Novel genes of the dsr gene cluster and evidence for close interaction of the Dsr proteins during sulfur oxidation in the phototrophic sulfur bacterium Allochromatium vinosum. J Bacteriol 187: 1392–1404PubMedCrossRefGoogle Scholar
  27. Dennis JJ and Zylstra GJ (1998) Plasposons: Modular self-cloning minitransposon derivatives for rapid genetic analysis of gram-negative bacterial genomes. Appl Environ Microbiol 64: 2710–2715PubMedGoogle Scholar
  28. Eisen JA, Nelson KE, Paulsen IT, Heidelberg JF, Wu M, Dodson RJ, Deboy R, Gwinn ML, Nelson WC, Haft DH, Hickey EK, Peterson JD, Durkin AS, Kolonay JL, Yang F, Holt I, Umayam LA, Mason T, Brenner M, Shea TP, Parksey D, Nierman WC, Feldblyum TV, Hansen CL, Craven MB, Radune D, Vamathevan J, Khouri H, White O, Gruber TM, Ketchum KA, Venter JC, Tettelin H, Bryant DA and Fraser CM (2002) The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proc Nat Acad Sci USA 99: 9509–9514PubMedCrossRefGoogle Scholar
  29. Evans MCW, Buchanan BB and Arnon DI (1966) A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc Nat Acad Sci USA 55: 928–934PubMedCrossRefGoogle Scholar
  30. Fahey RC (2001) Novel thiols of prokaryotes. Annu Rev Microbiol 55: 333–356PubMedCrossRefGoogle Scholar
  31. Fahey RC, Buschbacher RM and Newton GL (1987) The evolution of glutathione metabolism in phototrophic microorganisms. J Mol Evol 25: 81–88PubMedCrossRefGoogle Scholar
  32. Friedrich CG, Rother D, Bardischewsky F, Quentmeier A and Fischer J (2001) Oxidation of reduced inorganic sulfur compounds by bacteria: Emergence of a common mechanism? Appl Environ Microbiol 67: 2873–2882PubMedCrossRefGoogle Scholar
  33. Frigaard NU and Bryant DA (2001) Chromosomal gene inactivation in the green sulfur bacterium Chlorobium tepidum by natural transformation. Appl Environ Microbiol 67: 2538–2544PubMedCrossRefGoogle Scholar
  34. Frigaard NU and Bryant DA (2004) Seeing green bacteria in a new light: Genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria. Arch Microbiol 182: 265–276PubMedCrossRefGoogle Scholar
  35. Frigaard NU, Li H, Milks KJ and Bryant DA (2004a) Nine mutants of Chlorobium tepidum each unable to synthesize a different chlorosome protein still assemble functional chlorosomes. J Bacteriol 186: 646–653PubMedCrossRefGoogle Scholar
  36. Frigaard NU, Maresca JA, Yunker CE, Jones AD and Bryant DA (2004b) Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum. J Bacteriol 186: 5210–5220PubMedCrossRefGoogle Scholar
  37. Gonzalez JM, Kiene RP and Moran MA (1999) Transformation of sulfur compounds by an abundant lineage of marine bacteria in the alpha-subclass of the class Proteobacteria. Appl Environ Microbiol 65: 3810–3819PubMedGoogle Scholar
  38. Gordon DA and Giovannoni SJ (1996) Detection of stratified microbial populations related to Chlorobium and Fibrobacter species in the Atlantic and Pacific oceans. Appl Environ Microbiol 62: 1171–1177PubMedGoogle Scholar
  39. Hansen TA and van Gemerden H (1972) Sulfide utilization by purple nonsulfur bacteria. Arch Mikrobiol 86: 49–56PubMedCrossRefGoogle Scholar
  40. Hanson TE and Tabita FR (2001) A ribulose-1, 5-bisphosphate carboxylase/oxygenase (rubisco)-like protein from Chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress. Proc Natl Acad Sci USA 98: 4397–4402PubMedCrossRefGoogle Scholar
  41. Hanson TE and Tabita FR (2003) Insights into the stress response and sulfur metabolism revealed by proteome analysis of a Chlorobium tepidum mutant lacking the Rubisco-like protein. Photosynth Res 78: 231–248PubMedCrossRefGoogle Scholar
  42. Hayes F (2003) Transposon-based strategies for microbial functional genomics and proteomics. Annu Rev Genet 37: 3–29PubMedCrossRefGoogle Scholar
  43. Heising S, Richter L, Ludwig W and Schink B (1999) Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a “Geospirillum” sp. Strain. Arch Microbiol 172: 116–124PubMedCrossRefGoogle Scholar
  44. Henshaw PF and Zhu W (2001) Biological conversion of hydrogen sulphide to elemental sulphur in a fixed-film continuous flow photo-reactor. Water Res 35: 3605–3610PubMedCrossRefGoogle Scholar
  45. Hernandez ME, Kappler A and Newman DK (2004) Phenazines and other redox-active antibiotics promote microbial mineral reduction. Appl Environ Microbiol 70: 921–928PubMedCrossRefGoogle Scholar
  46. Huang F, Hedman E, Funk C, Kieselbach T, Schroder WP and Norling B (2004) Isolation of outer membrane of Synechocystis sp. Pcc 6803 and its proteomic characterization. Mol Cell Proteomics 3: 586–595PubMedCrossRefGoogle Scholar
  47. Imhoff JF (2001) True marine and halophilic anoxygenic phototrophic bacteria. Arch Microbiol 176: 243–254PubMedCrossRefGoogle Scholar
  48. Imhoff JF (2003) Phylogenetic taxonomy of the family Chlorobiaceae on the basis of 16S rRNA and fmo (Fenna–Matthews–Olson protein) gene sequences. Int J Syst Evol Microbiol 53: 941–951PubMedCrossRefGoogle Scholar
  49. Jensen MT, Knudsen J and Olson JM (1991) A novel aminoglycosphingolipid found in Chlorobium limicola f thiosulfatophilum-6230. Arch Microbiol 156: 248–254CrossRefGoogle Scholar
  50. Jung DO, Carey JR, Achenbach LA and Madigan MT (2000) Phototrophic green sulfur bacteria from permanently frozen antarctic lakes. 100th General Meeting of the American Society for Microbiology 100: 388Google Scholar
  51. Kim BW and Chang HN (1991) Removal of hydrogen sulfide by Chlorobium thiosulfatophilum in immobilized-cell and sulfur-settling free-cell recycle reactors. Biotechnol Prog 7: 495–500PubMedCrossRefGoogle Scholar
  52. Larimer FW, Chain P, Hauser L, Lamerdin J, Malfatti S, Do L, Land ML, Pelletier DA, Beatty JT, Lang AS, Tabita FR, Gibson JL, Hanson TE, Bobst C, Torres JL, Peres C, Harrison FH, Gibson J and Harwood CS (2004) Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat Biotechnol 22: 55–61PubMedCrossRefGoogle Scholar
  53. Lies DP, Hernandez ME, Kappler A, Mielke RE, Gralnick JA and Newman DK (2005) Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms. Appl Environ Microbiol 71: 4414–4426PubMedCrossRefGoogle Scholar
  54. Link AJ, Hays LG, Carmack EB and Yates JR, 3rd (1997) Identifying the major proteome components of Haemophilus influenzae type-strain NCTC 8143. Electrophoresis 18: 1314–1334PubMedCrossRefGoogle Scholar
  55. Lloyd JR (2003) Microbial reduction of metals and radionuclides. FEMS Microbiol Rev 27: 411–425PubMedCrossRefGoogle Scholar
  56. Ma K, Schicho RN, Kelly RM and Adams MW (1993) Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: Evidence for a sulfur-reducing hydrogenase ancestor. Proc Natl Acad Sci USA 90: 5341–5344PubMedCrossRefGoogle Scholar
  57. Manske AK, Glaeser J, Kuypers MMM and Overmann J (2005) Physiology and phylogeny of green sulfur bacteria forming a monospecific phototrophic assemblage at a depth of 100 m in the Black Sea. Appl Environ Microbiol 71: 8049–8060PubMedCrossRefGoogle Scholar
  58. Maresca JA, Gomez Maqueo Chew A, Ponsati MR, Frigaard NU, Ormerod JG and Bryant DA (2004) The bchU gene of Chlorobium tepidum encodes the C-20 methyltransferase in bacteriochlorophyll c biosynthesis. J Bacteriol 186: 2558–2566PubMedCrossRefGoogle Scholar
  59. Mizuno T and Kageyama M (1978) Separation and characterization of the outer membrane of Pseudomonas aeruginosa. J Biochem (Tokyo) 84: 179–191Google Scholar
  60. Mukhopadhyay B, Johnson EF and Ascano MJ (1999) Conditions for vigorous growth on sulfide and reactor-scale cultivation protocols for the thermophilic green sulfur bacterium Chlorobium tepidum. Appl Environ Microbiol 65: 301–306PubMedGoogle Scholar
  61. Myers JM and Myers CR (2001) Role for outer membrane cytochromes OmcA and OmcB of Shewanella putrefaciens MR-1 in reduction of manganese dioxide. Appl Environ Microbiol 67: 260–269PubMedCrossRefGoogle Scholar
  62. Neidhardt FC, Appleby DB, Sankar P, Hutton ME and Phillips TA (1989) Genomically linked cellular protein databases derived from two-dimensional polyacrylamide gel electrophoresis. Electrophoresis 10: 116–122PubMedCrossRefGoogle Scholar
  63. Ormerod J (1988) Natural genetic transformation in Chlorobium. In: Olson JM, Ormerod J, Amesz J, Stackebrandt E, Trüper HG (eds) Green Photosynthetic Bacteria, 315–319. Plenum, New YorkGoogle Scholar
  64. Overmann J (2000) The family Chlorobiaceae. In: Dworkin M (ed) The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community. Springer, New YorkGoogle Scholar
  65. Overmann J and van Gemerden H (2000) Microbial interactions involving sulfur bacteria: Implications for the ecology and evolution of bacterial communities. FEMS Microbiol Rev 24: 591–599PubMedCrossRefGoogle Scholar
  66. Overmann J, Cypionka H and Pfennig N (1992) An extremely low-light-adapted phototrophic sulfur bacterium from the black sea. Limnol Oceanogr 37: 150–155CrossRefGoogle Scholar
  67. Paschinger H, Paschinger J and Gaffron H (1974) Photochemical disproportionation of sulfur into sulfide and sulfate by Chlorobium limicola forma thiosulfatophilum. Arch Microbiol 96: 341–351CrossRefGoogle Scholar
  68. Patterson SD and Aebersold RH (2003) Proteomics: The first decade and beyond. Nat Genet 33 Suppl: 311–323PubMedCrossRefGoogle Scholar
  69. Patton WF (2002) Detection technologies in proteome analysis. J Chromatogr B Analyt Technol Biomed Life Sci 771: 3–31PubMedCrossRefGoogle Scholar
  70. Phillips TA, Bloch PL and Neidhardt FC (1980) Protein identifications on O’Farrell two-dimensional gels: Locations of 55 additional Escherichia coli proteins. J Bacteriol 144: 1024–1033PubMedGoogle Scholar
  71. Pickering IJ, George GN, Yu EY, Brune DC, Tuschak C, Overmann J, Beatty JT and Prince RC (2001) Analysis of sulfur biochemistry of sulfur bacteria using x-ray absorption spectroscopy. Biochemistry 40: 8138–8145PubMedCrossRefGoogle Scholar
  72. Pires RH, Lourenco AI, Morais F, Teixeira M, Xavier AV, Saraiva LM and Pereira IA (2003) A novel membrane-bound respiratory complex from Desulfovibrio desulfuricans ATCC 27774. Biochim Biophys Acta 1605: 67–82PubMedCrossRefGoogle Scholar
  73. Pott AS and Dahl C (1998) Sirohaem sulfite reductase and other proteins encoded by genes at the dsr locus of Chromatium vinosum are involved in the oxidation of intracellular sulfur. Microbiology 144: 1881–1894PubMedCrossRefGoogle Scholar
  74. Powls R, Redfearn E and Trippett S (1968) The structure of chlorobiumquinone. Biochem Biophys Res Commun 33: 408–411PubMedCrossRefGoogle Scholar
  75. Prange A, Arzberger I, Engemann C, Modrow H, Schumann O, Trüper HG, Steudel R, Dahl C and Hormes J (1999) In situ analysis of sulfur in the sulfur globules of phototrophic sulfur bacteria by x-ray absorption near edge spectroscopy. Biochim Biophys Acta 1428: 446–454PubMedGoogle Scholar
  76. Prange A, Chauvistre R, Modrow H, Hormes J, Trüper HG and Dahl C (2002) Quantitative speciation of sulfur in bacterial sulfur globules: x-ray absorption spectroscopy reveals at least three different species of sulfur. Microbiology 148: 267–276PubMedGoogle Scholar
  77. Quentmeier A and Friedrich CG (2001) The cysteine residue of the SoxY protein as the active site of protein-bound sulfur oxidation of Paracoccus pantotrophus GB17. FEBS Lett 503: 168–172PubMedCrossRefGoogle Scholar
  78. Reinartz M, Tschape J, Brüser T, Trüper HG and Dahl C (1998) Sulfide oxidation in the phototrophic sulfur bacterium chromatium vinosum. Arch Microbiol 170: 59–68PubMedCrossRefGoogle Scholar
  79. Rubin EJ, Akerley BJ, Novik VN, Lampe DJ, Husson RN and Mekalanos JJ (1999) In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc Natl Acad Sci USA 96: 1645–1650PubMedCrossRefGoogle Scholar
  80. Sagulenko V, Sagulenko E, Jakubowski S, Spudich E and Christie PJ (2001) Virb7 lipoprotein is exocellular and associates with the Agrobacterium tumefaciens T pilus. J Bacteriol 183: 3642–3651PubMedCrossRefGoogle Scholar
  81. Schütz M, Shahak Y, Padan E and Hauska G (1997) Sulfide-quinone reductase from Rhodobacter capsulatus. Purification, cloning and expression. J Biol Chem 272: 9890–9894PubMedCrossRefGoogle Scholar
  82. Schütz M, Maldener I, Griesbeck C and Hauska G (1999) Sulfide-quinone reductase from Rhodobacter capsulatus: Requirement for growth, periplasmic localization and extension of gene sequence analysis. J Bacteriol 181: 6516–6523PubMedGoogle Scholar
  83. Shahak Y, Arieli B, Padan E and Hauska G (1992) Sulfide quinone reductase (sqr) activity in Chlorobium. FEBS Lett 299: 127–130PubMedCrossRefGoogle Scholar
  84. Shen N, Dagasan L, Sledjeski D and Weiner RM (1989) Major outer membrane proteins unique to reproductive cells of Hyphomonas jannaschiana. J Bacteriol 171: 2226–2228PubMedGoogle Scholar
  85. Takaichi S, Wang ZY, Umetsu M, Nozawa T, Shimada K and Madigan MT (1997) New carotenoids from the thermophilic green sulfur bacterium Chlorobium tepidum: 1′, 2′-dihydro-gamma-carotene, 1′, 2′-dihydrochlorobactene, and OH-chlorobactene glucoside ester, and the carotenoid composition of different strains. Arch Microbiol 168: 270–276PubMedCrossRefGoogle Scholar
  86. Thomas PE, Ryan D and Levin W (1976) An improved staining procedure for the detection of the peroxidase activity of cytochrome P-450 on sodium dodecyl sulfate polyacrylamide gels. Anal Biochem 75: 168–176PubMedCrossRefGoogle Scholar
  87. Tuschak C, Glaeser J and Overmann J (1999) Specific detection of green sulfur bacteria by in situ hybridization with a fluorescently labeled oligonucleotide probe. Arch Microbiol 171: 265–272PubMedCrossRefGoogle Scholar
  88. Vassilieva EV, Ormerod JG and Bryant DA (2002a) Biosynthesis of chlorosome proteins is not inhibited in acetylene-treated cultures of Chlorobium vibrioforme. Photosynth Res 71: 69–81PubMedCrossRefGoogle Scholar
  89. Vassilieva EV, Stirewalt VL, Jakobs CU, Frigaard NU, Inoue-Sakamoto K, Baker MA, Sotak A and Bryant DA (2002b) Subcellular localization of chlorosome proteins in Chlorobium tepidum and characterization of three new chlorosome proteins: CsmF, CsmH, and CsmX. Biochemistry 41: 4358–4370PubMedCrossRefGoogle Scholar
  90. Verté F, Kostanjevecki V, De Smet L, Meyer TE, Cusanovich MA and Van Beeumen JJ (2002) Identification of a thiosulfate utilization gene cluster from the green phototrophic bacterium Chlorobium limicola. Biochemistry 41: 2932–2945PubMedCrossRefGoogle Scholar
  91. Vila X, Guyoneaud R, Cristina XP, Figueras JB and Abella CA (2002) Green sulfur bacteria from hypersaline Chiprana Lake (Monegros, Spain): Habitat description and phylogenetic relationship of isolated strains. Photosynth Res 71: 165–172PubMedCrossRefGoogle Scholar
  92. Wahlund TM and Madigan MT (1995) Genetic transfer by conjugation in the thermophilic green sulfur bacterium Chlorobium tepidum. J Bacteriol 177: 2583–2588PubMedGoogle Scholar
  93. Wahlund TM, Woese CR, Castenholz RW and Madigan MT (1991) A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov. Arch Microbiol 156: 81–90CrossRefGoogle Scholar
  94. Wong SM and Mekalanos JJ (2000) Genetic footprinting with mariner-based transposition in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 97: 10191–10196PubMedCrossRefGoogle Scholar
  95. Xie Z and Merchant S (1996) The plastid-encoded ccsA gene is required for heme attachment to chloroplast c-type cytochromes. J Biol Chem 271: 4632–4639PubMedCrossRefGoogle Scholar
  96. Yarzabal A, Brasseur G, Ratouchniak J, Lund K, Lemesle-Meunier D, DeMoss JA and Bonnefoy V (2002) The high-molecular-weight cytochrome c Cyc2 of Acidithiobacillus ferrooxidans is an outer membrane protein. J Bacteriol 184: 313–317PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Leong-Keat Chan
    • 1
  • Rachael Morgan-Kiss
    • 1
  • Thomas E. Hanson
    • 1
  1. 1.College of Marine and Earth Studies and Delaware Biotechnology InstituteUniversity of DelawareNewarkUSA

Personalised recommendations