Hydraulic Model of the Skin Friction Reduction with Surface Grooves

  • Bettina Frohnapfel
  • Peter Lammers
  • Jovan Jovanović
  • Antonio Delgado
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 7)

Abstract

The reduction of skin friction in turbulent flows holds considerable promise for energy savings. The present work shows how and why skin friction and the dissipation are interrelated in turbulent channel flows. A hydraulic model formulation is presented for the skin friction reduction that can be obtained with a surface structure recently proposed for flow control. The model predictions are validated with results from direct numerical simulations.

Key words

Flow control skin friction reduction surface structures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.A. Antonia, M. Teitel, J. Kim, L.W.B. Browne: Low-Reynolds-number effects in a fully developed turbulent channel flow. J. Fluid Mech. 236 (1992) 579–605.CrossRefGoogle Scholar
  2. 2.
    R.B. Dean: Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow. J. Fluids Engrg. 100 (1978) 215–223.Google Scholar
  3. 3.
    B. Frohnapfel, P. Lammers, J. Jovanović: The role of turbulent dissipation for flow control of near-wall turbulence. In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, C. Tropea, S. Jarkilic, H.-J. Heinemann, R. Henke, H. Hönlinger (Eds.), Springer, Berlin (2007) in print.Google Scholar
  4. 4.
    B. Frohnapfel, P. Lammers, J. Jovanović, F. Durst: Interpretation of the mechanism associated with turbulent drag reduction in terms of anisotropy invariants. J. Fluid Mech. 577 (2007) 457–466.MATHCrossRefGoogle Scholar
  5. 5.
    J. Kim, P. Moin, R. Moser: Turbulence statistics in a fully developed channel flow at low Reynolds numbers. J. Fluid Mech. 177 (1987) 133–166.MATHCrossRefGoogle Scholar
  6. 6.
    A. Kuroda, N. Kasagi, M. Hirata: A direct numerical simulation of the fully developed turbulent channel flow. In Proceedings of International Symposium on Computational Fluid Dynamics, Nagoya, Japan (1989) pp. 1174–1179.Google Scholar
  7. 7.
    P. Lammers: Direct numerical simulations of wall-bounded flows at low Reynolds number with the lattice-Boltzmann method. Ph.D. Thesis, University of Erlangen-Nuremberg (2004) [in German].Google Scholar
  8. 8.
    R.D. Moser, J. Kim, N.N. Mansour: Direct numerical simulation of turbulent channel flow up to Re τ=590. Phys. Fluids 11 (1999) 943–945.MATHCrossRefGoogle Scholar
  9. 9.
    R. Volkert: Determination of statistical turbulence quantities for a turbulent channel flow based on direct numerical simulations. Ph.D. Thesis, University of Erlangen-Nuremberg (2006) [in German].Google Scholar
  10. 10.
    B. Frohnapfel, J. Jovanović, A. Delgado: Experimental investigation of turbulent drag reduction by surface embedded grooves. J. Fluid Mech. (2007) in print.Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Bettina Frohnapfel
    • 1
  • Peter Lammers
    • 2
  • Jovan Jovanović
    • 1
  • Antonio Delgado
    • 1
  1. 1.Institute of Fluid MechanicsFriedrich-Alexander University Erlangen-NurembergErlangenGermany
  2. 2.High Performance Computing Center StuttgartStuttgartGermany

Personalised recommendations