Skip to main content

Part of the book series: Carbon Materials: Chemistry and Physics ((CMCP,volume 1))

Abstract

Due to their inherent electronic properties, fullerenes are considered as radical sponges being capable of effectively quenching reactive oxygen species (ROS). The most promising candidates for potential pharmaceutical applications are therefore water-soluble fullerene derivatives, since they provide reasonable biological availability. In light of these considerations, we give an overview over the most recent concepts for designing and synthesizing real water-soluble fullerene compounds. Several studies concerning the quenching activities against ROS-like Superoxide radical anion of some of these novel compounds are reviewed. We finally present first promising investigations about cytoprotective and neuroprotective activities of several carboxyfullerenes in zebrafish embroys as a mammalian model system. By comparing the activities for different addition patterns and other structural changes some first conclusions concerning a structure-function relationship can be drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali SS, Hardt JI, Quick KL, Sook Kim-Han J, Erlanger BF, Huang T-T, Epstein CJ, Dugan LL (2004) A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties. Free Radic. Biol. Med. 37: 1191-1202.

    Article  CAS  Google Scholar 

  • Andersson T, Nilsson K, Sundahl M, Westman G, Wennerstroem O (1992) C60 embedded in gamma-cyclodextrin: a water-soluble fullerene. Chem. Commun. 604-606.

    Google Scholar 

  • Angelini G, Cusan C, De Maria P, Fontana A, Maggini M, Pierini M, Prato M, Schergna S, Villani C (2005) The associative properties of some amphiphilic fullerene derivatives. Eur. J. Org. Chem. 1884-1891.

    Google Scholar 

  • Bensasson RV, Brettreich M, Frederiksen J, Gottinger H, Hirsch A, Land EJ, Leach S, McGarvey DJ, Schonberger H (2000) Reactions of e-aq, CO2• -, HO, O2• - and O2(1Δg) with a dendro[60]fullerene and C60[C(COOH)2]n (n = 2-6). Free Radic. Biol. Med. 29: 26-33.

    Google Scholar 

  • Beuerle F, Chronakis N, Hirsch A (2005) Regioselective synthesis and zone selective deprotection of [60]fullerene tris-adducts with an e,e,e addition pattern. Chem. Commun. 3676-3678.

    Google Scholar 

  • Beuerle F, Witte P, Hartnagel U, Lebovitz R, Parng C, Hirsch A (2007) Cytoprotective activities of water-soluble fullerenes in zebrafish models. J. Exp. Nanosci. 2: 147-170.

    Article  CAS  Google Scholar 

  • Bingel C (1993) Cyclopropanation of fullerenes. Chem. Ber. 126: 1957-1959.

    Article  Google Scholar 

  • Bisaglia M, Natalini B, Pellicciari R, Straface E, Malorni W, Monti D, Franceschi C, Schettini G (2000) C3-fullero-tris-methanodicarboxylic acid protects cerebellar granule cells from apoptosis. J. Neurochem. 74: 1197-1204.

    Article  Google Scholar 

  • Bosi S, Da Ros T, Castellano S, Banfi E, Prato M (2000) Antimycobacterial activity of ionic fullerene derivatives. Bioorg. Med. Chem. Lett. 10: 1043-1045.

    Article  Google Scholar 

  • Bosi S, Feruglio L, Milic D, Prato M (2003) Synthesis and water solubility of novel fullerene bisadduct derivatives. Eur. J. Org. Chem. 4741-4747.

    Google Scholar 

  • Braun M, Atalick S, Guldi Dirk M, Lanig H, Brettreich M, Burghardt S, Hatzimarinaki M, Ravanelli E, Prato M, Van Eldik R, Hirsch A (2003) Electrostatic Complexation and Photoinduced Electron Transfer between Zn-Cytochromec and Polyanionic Fullerene Dendrimers. Chem. Eur. J. 9: 3867-3875.

    Article  CAS  Google Scholar 

  • Brettreich M, Hirsch A (1998) A highly water-soluble dendro[60]fullerene. Tetrahedron Lett. 39: 2731-2734.

    Article  Google Scholar 

  • Brettreich M (2003) 2000 Ph.D. thesis, Friedrich Alexander University Erlangen Nuremberg.

    Google Scholar 

  • Cassell AM, Asplund CL, Tour JM (1999) Self-assembling supramolecular nanostructures from a C60 derivative: Nanorods and vesicles. Angew. Chem. Int. Ed. 38: 2403-2405.

    Article  Google Scholar 

  • Chen Y-W, Hwang KC, Yen C-C, Lai Y-L (2004) Fullerene derivatives protect against oxidative stress in RAW 264.7 cells and ischemia-reperfused lungs. Am. J. Physiol. 287: R21-R26.

    Google Scholar 

  • Chi Y, Bhonsle JB, Canteenwala T, Huang J-P, Shiea J, Chen B-J, Chiang LY (1998) Novel water-soluble hexakis(4-sulfobutyl)fullerenes as potent free radical scavengers. Chem. Lett. 465-466.

    Google Scholar 

  • Chi Y, Canteenwala T, Chen HHC, Jeng US, Lin T-L, Chiang LY (2002) Free radical scavenging and photodynamic functions of micelle-like hydrophilic hexa(sulfobutyl)fullerene (FC4S). Perspect. Fullerene Nanotechnol. 165-183.

    Google Scholar 

  • Chiang LY, Lu F-J, Lin J-T (1995) Free radical scavenging activity of water-soluble fullerenols. Chem. Commun. 1: 1283-1284.

    Google Scholar 

  • Chiang LY, Bhonsle JB, Wang L, Shu SF, Chang TM, Hwu JR (1996) Efficient one-flask synthesis of water-soluble [60]fullerenols. Tetrahedron 52: 4963-4972.

    Article  Google Scholar 

  • Cusan C, Da Ros T, Spalluto G, Foley S, Janot J-M, Seta P, Larroque C, Tomasini MC, Antonelli T, Ferraro L, Prato M (2002) A new multi-charged C60 derivative: synthesis and biological prop-erties. Eur. J. Org. Chem. 2928-2934.

    Google Scholar 

  • Da Ros T, Prato M, Novello F, Maggini M, Banfi E (1996) Easy Access to Water Soluble Fullerene Derivatives via 1,3-Dipolar Cycloadditions of Azomethine Ylides to C60. J. Org. Chem. 61: 9070-9072.

    Article  Google Scholar 

  • Da Ros T, Prato M (1999) Medicinal chemistry with fullerenes and fullerene derivatives. Chem. Commun. 663-669.

    Google Scholar 

  • Daroczi B, Kari G, McAleer MF, Wolf JC, Rodeck U, Dicker AP (2006) In vivo radioprotection by the fullerene nanoparticle DF-1 as assessed in a zebrafish model. Clin. Cancer Res. 12: 7086-7091.

    Article  Google Scholar 

  • de La Vaissiere B, Sandall JPB, Fowler PW, de Oliveira P, Bensasson RV (2001) Regioselectivity in radical reactions of C60 derivatives. J. Chem. Soc. Perkin Trans. 2: 821-823.

    Google Scholar 

  • Dugan LL, Sensi SL, Canzoniero LMT, Handran SD, Rothman SM, Lin TS, Goldberg MP, Choi DW (1995) Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate. J. Neurosci. 15: 6377-6388.

    Google Scholar 

  • Dugan LL, Turetsky DM, Du C, Lobner D, Wheeler M, Almli CR, Shen CK, Luh TY, Choi DW, Lin TS (1997) Carboxyfullerenes as neuroprotective agents. Proc. Natl. Acad. Sci. USA 94: 9434-9439.

    Article  Google Scholar 

  • Dugan LL, Lovett EG, Quick KL, Lotharius J, Lin TT, O’Malley KL (2001) Fullerene-based antioxidants and neurodegenerative disorders. Parkinsonism Relat. Disord. 7: 243-246.

    Article  Google Scholar 

  • Echegoyen L, Echegoyen LE (1998) Electrochemistry of Fullerenes and Their Derivatives. Acc. Chem. Res. 31: 593-601.

    Article  Google Scholar 

  • Faulkner KM, Liochev SI, Fridovich I (1994) Stable Mn(III) porphyrins mimic superoxide dismutase in vitro and substitute for it in vivo. J. Biol. Chem. 269: 23471-23476.

    Google Scholar 

  • Foley S, Crowley C, Smaihi M, Bonfils C, Erlanger BF, Seta P, Larroque C (2002) Cellular locali-sation of a water-soluble fullerene derivative. Biochem. Biophys. Res. Commun. 294: 116-119.

    Article  CAS  Google Scholar 

  • Fumelli C, Marconi A, Salvioli S, Straface E, Malorni W, Offidani AM, Pellicciari R, Schettini G, Giannetti A, Monti D, Franceschi C, Pincelli C (2000) Carboxyfullerenes protect human keratinocytes from ultraviolet-B-induced apoptosis. J. Invest. Dermatol. 115: 835-841.

    Article  Google Scholar 

  • Gharbi N, Pressac M, Hadchouel M, Szwarc H, Wilson SR, Moussa F (2005) [60]Fullerene is a Powerful Antioxidant in Vivo with No Acute or Subacute Toxicity. Nano Lett . 5: 2578-2585.

    Article  CAS  Google Scholar 

  • Giacalone F, Martin N (2006) Fullerene Polymers: Synthesis and Properties. Chem. Rev. 106: 5136-5190.

    Article  CAS  Google Scholar 

  • Guldi DM, Prato M (2000) Excited-State Properties of C60 Fullerene Derivatives. Acc. Chem. Res. 33: 695-703.

    Article  CAS  Google Scholar 

  • Gun’kin IF, Tseluikin VN, Loginova NY (2006) Synthesis and properties of water-soluble deriva-tives of fullerene C60. Russ. J. Appl. Chem. 79: 1001-1004.

    Article  CAS  Google Scholar 

  • Herrmann A, Ruettimann M, Thilgen C, Diederich F (1995) Multiple cyclopropanations of C70. Synthesis and characterization of bis-, tris-, and tetrakis-adducts and chiroptical properties of bis-adducts with chiral addends, including a recommendation for the configurational description of fullerene derivatives with a chiral addition pattern. Helv. Chim. Acta 78: 1673-1704.

    Google Scholar 

  • Hirsch A, Lamparth I, Karfunkel HR (1994) Fullerene chemistry in three dimensions: isolation of seven regioisomeric bisadducts and chiral trisadducts from C60 and bis(ethoxycarbonyl)methyl ene. Angew. Chem. Int. Ed. Engl. 33: 437-438.

    Article  Google Scholar 

  • Hirsch A, Brettreich M (2005) Fullerenes - Chemistry and Reactions. Wiley-VCH Verlag, Weinheim.

    Google Scholar 

  • Hu Z, Guan WC, Tang XY, Huang LZ, Xu H (2007) Synthesis of water-soluble cystine C60 deriva-tive with catalyst and its active oxygen radical scavenging ability. Chin. Chem. Lett. 18: 51-54.

    Article  CAS  Google Scholar 

  • Huang SS, Tsai SK, Chih CL, Chiang LY, Hsieh HM, Teng CM, Tsai MC (2001) Neuroprotective effect of hexasulfobutylated C60 on rats subjected to focal cerebral ischemia. Free Radic. Biol. Med. 30: 643-649.

    Article  Google Scholar 

  • Huang YL, Shen CK, Luh TY, Yang HC, Hwang KC, Chou CK (1998) Blockage of apoptotic signaling of transforming growth factor-beta in human hepatoma cells by carboxyfullerene. Eur. J. Biochem. 254: 38-43.

    Article  Google Scholar 

  • Illescas BM, Martinez-Alvarez R, Fernandez-Gadea J, Martin N (2003) Synthesis of water soluble fulleropyrrolidines bearing biologically active arylpiperazines. Tetrahedron 59: 6569-6577.

    Article  CAS  Google Scholar 

  • Jeng US, Lin TL, Chang TS, Lee HY, Hsu CH, Hsieh YW, Canteenwala T, Chiang LY (2001) Comparison of the aggregation behavior of water-soluble hexa(sulfobutyl)fullerenes and polyhydroxylated fullerenes for their free-radical scavenging activity. Prog. Colloid Polym. Sci. 118: 232-237.

    Article  Google Scholar 

  • Kato H, Boettcher C, Hirsch A (2007) Sugar balls: synthesis and supramolecular assembly of [60]fullerene. Eur. J. Org. Chem. 2659-2666.

    Google Scholar 

  • Kiritoshi S, Nishikawa T, Sonoda K, Kukidome D, Senokuchi T, Matsuo T, Matsumura T, Tokunaga H, Brownlee M, Araki E (2003) Reactive oxygen species from mitochondria induce cyclooxygenase-2 gene expression in human mesangial cells: potential role in diabetic nephropathy. Diabetes 52: 2570-2577.

    Article  Google Scholar 

  • Kordatos K, Bosi S, Da Ros T, Zambon A, Lucchini V, Prato M (2001) Isolation and charac-terization of all eight bisadducts of fulleropyrrolidine derivatives. J. Org. Chem. 66: 2802-2808.

    Article  CAS  Google Scholar 

  • Kraetschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347: 354-358.

    Article  Google Scholar 

  • Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318: 162-163.

    Article  Google Scholar 

  • Krusic PJ, Wasserman E, Keizer PN, Morton JR, Preston KF (1991) Radical reactions of C60. Science 254: 1183-1185.

    Article  Google Scholar 

  • Kunsagi-Mate S, Szabo K, Bitter I, Nagy G, Kollar L(2004) Complex formation between water-soluble sulfonated calixarenes and C60 fullerene. Tetrahedron Lett.45: 1387-1390.

    Google Scholar 

  • Lafon-Cazal M, Pietri S, Culcasi M, Bockaert J (1993) NMDA-dependent superoxide production and neurotoxicity. Nature 364: 535-537.

    Article  Google Scholar 

  • Lai HS, Chen WJ, Chiang LY (2000a) Free radical scavenging activity of fullerenol on the ischemia-reperfusion intestine in dogs. World J. Surg. 24: 450-454.

    Article  Google Scholar 

  • Lai HS, Chen Y, Chen WJ, Chang KJ, Chiang LY (2000b) Free radical scavenging activity of fullerenol on grafts after small bowel transplantation in dogs. Transplantation Proc. 32: 1272-1274.

    Article  Google Scholar 

  • Lamparth I, Hirsch A (1994) Water-soluble malonic acid derivatives of C60 with a defined three-dimensional structure. Chem. Commun. 1727-1728.

    Google Scholar 

  • Lee YT, Chiang LY, Chen WJ, Hsu HC (2000) Water-soluble Hexasulfobutyl[60]fullerene inhibit low-density lipoprotein oxidation in aqueous and lipophilic phases. C. Proc. Soc. Exp. Biol. Med. 224: 69-75.

    Article  Google Scholar 

  • Lin AM, Chyi BY, Wang SD, Yu HH, Kanakamma PP, Luh TY, Chou CK, Ho LT (1999) Carboxyfullerene prevents iron-induced oxidative stress in rat brain. J. Neurochem. 72: 1634-1640.

    Article  Google Scholar 

  • Lin AM, Fang SF, Lin SZ, Chou CK, Luh TY, Ho LT (2002) Local carboxyfullerene protects cortical infarction in rat brain. Neurosci. Res. 43: 317-321.

    Article  Google Scholar 

  • Lin HS, Lin TS, Lai RS, D’Rosario T, Luh TY (2001) Fullerenes as a new class of radioprotectors. Int. J. Radiat. Biol. 77: 235-239.

    Article  Google Scholar 

  • Lotharius J, Dugan LL, O’Malley KL (1999) Distinct mechanisms underlie neurotoxin-mediated cell death in cultured dopaminergic neurons. J. Neurosci. 19: 1284-1293.

    Google Scholar 

  • Maggini M, Scorrano G, Prato M (1993) Addition of azomethine ylides to C60: synthesis, charac-terization, and functionalization of fullerene pyrrolidines. J. Am. Chem. Soc. 115: 9798-9799.

    Article  Google Scholar 

  • Marchesan S, Da Ros T, Prato M (2005) Isolation and characterization of nine tris-adducts of N-methylfulleropyrrolidine derivatives. J. Org. Chem. 70: 4706-4713.

    Article  CAS  Google Scholar 

  • Mashino T, Okuda K, Hirota T, Hirobe M, Nagano T, Mochizuki M (1999) Inhibition of E. coli growth by fullerene derivatives and inhibition mechanism. Bioorg. Med. Chem. Lett. 9: 2959-2962.

    Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase. Enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244: 6049-6055.

    Google Scholar 

  • McEwen CN, McKay RG, Larsen BS (1992) C60 as a radical sponge. J. Am. Chem. Soc. 114: 4412-4414.

    Article  Google Scholar 

  • Mirkov SM, Djordjevic AN, Andric NL, Andric SA, Kostic TS, Bogdanovic GM, Vojinovic-Miloradov MB, Kovacevic RZ (2004) Nitric oxide-scavenging activity of polyhydroxylated fullerenol, C60(OH)24. Nitric Oxide 11: 201-207.

    Article  CAS  Google Scholar 

  • Monti D, Moretti L, Salvioli S, Straface E, Malorni W, Pellicciari R, Schettini G, Bisaglia M, Pincelli C, Fumelli C, Bonafe M, Franceschi C (2000) C60 carboxyfullerene exerts a protective activity against oxidative stress-induced apoptosis in human peripheral blood mononuclear cells. Biochem. Biophys. Res. Commun. 277: 711-717.

    Article  CAS  Google Scholar 

  • Murthy CN, Geckeler KE (2001) The water-soluble beta-cyclodextrin-[60]fullerene complex. Chem. Commun. 1194-1195.

    Google Scholar 

  • Nakamura E, Isobe H (2003) Functionalized Fullerenes in Water. The First 10 Years of Their Chemistry, Biology, and Nanoscience. Acc. Chem. Res. 36: 807-815.

    Google Scholar 

  • Okuda K, Mashino T, Hirobe M (1996) Superoxide radical quenching and cytochrome C peroxidase-like activity of C60-dimalonic acid, C62(COOH)4. Bioorg. Med. Chem. Lett. 6: 539-542.

    Article  Google Scholar 

  • Okuda K, Hirota T, Hirobe M, Nagano T, Mochizuki M, Mashino T (2000) Synthesis of various water-soluble C60 derivatives and their superoxide-quenching activity. Fullerene Sci. Technol. 8: 89-104.

    Google Scholar 

  • Pellarini F, Pantarotto D, Da Ros T, Giangaspero A, Tossi A, Prato M (2001) A novel [60]fullerene amino acid for use in solid-phase peptide synthesis. Org. Lett. 3: 1845-1848.

    Article  CAS  Google Scholar 

  • Periya VK, Koike I, Kitamura Y, Iwamatsu S-I, Murata S (2004) Hydrophilic [60]fullerene car-boxylic acid derivatives retaining the original 60 π electronic system. Tetrahedron Lett. 45: 8311-8313.

    Article  CAS  Google Scholar 

  • Reuther U, Brandmüller T, Donaubauer W, Hampel F, Hirsch A (2002) A highly regioselective approach to multiple adducts of C60 governed by strain minimization of macrocyclic malonate addends. Chem. Eur. J. 8: 2261-2273.

    Article  Google Scholar 

  • Reynolds IJ, Hastings TG (1995) Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J. Neurosci. 15: 3318-3327.

    Google Scholar 

  • Rieger JM, Shah AR, Gidday JM (2002) Ischemia-reperfusion injury of retinal endothelium by cyclooxygenase- and xanthine oxidase-derived superoxide. Exp. Eye Res. 74: 493-501.

    Article  CAS  Google Scholar 

  • Riley DP (1999) Functional mimics of superoxide dismutase enzymes as therapeutic agents. Chem. Rev. 99: 2573-2587.

    Article  CAS  Google Scholar 

  • Rio Y, Nierengarten J-F (2002) Water soluble supramolecular cyclotriveratrylene-[60]fullerene complexes with potential for biological applications. Tetrahedron Lett. 43: 4321-4324.

    Article  Google Scholar 

  • Scrivens WA, Tour JM, Creek KE, Pirisi L (1994) Synthesis of 14C-Labeled C60, Its Suspension in Water, and Its Uptake by Human Keratinocytes. J. Am. Chem. Soc. 116: 4517-4518.

    Article  Google Scholar 

  • Silva RM, Ries V, Oo TF, Yarygina O, Jackson-Lewis V, Ryu EJ, Lu PD, Marciniak SJ, Ron D, Przedborski S, Kholodilov N, Greene LA, Burke RE (2005) CHOP/GADD153 is a mediator of apoptotic death in substantia nigra dopamine neurons in an in vivo neurotoxin model of parkinsonism. J. Neurochem. 95: 974-986.

    Article  CAS  Google Scholar 

  • Straface E, Natalini B, Monti D, Franceschi C, Schettini G, Bisaglia M, Fumelli C, Pincelli C, Pellicciari R, Malorni W (1999) C3-fullero-tris-methanodicarboxylic acid protects epithelial cells from radiation-induced anoikia by influencing cell adhesion ability. FEBS Lett. 454: 335-340.

    Article  Google Scholar 

  • Sun T, Jia ZS, Chen WX, Jin YX, Zhu DX (2001) Active oxygen radical scavenging ability of water-soluble beta-alanine C60 adducts. Chin. Chem. Lett. 12: 997-1000.

    Google Scholar 

  • Sun T, Xu Z (2006) Radical scavenging activities of alpha-alanine C60 adduct. Bioorg. Med. Chem. Lett. 16: 3731-3734.

    Article  CAS  Google Scholar 

  • Troshina OA, Troshin PA, Peregudov AS, Kozlovskiy VI, Balzarini J, Lyubovskaya RN (2007) Chlorofullerene C60Cl6: a precursor for straightforward preparation of highly water-soluble polycarboxylic fullerene derivatives active against HIV. Org. Biomol. Chem. 5: 2783-2791.

    Article  CAS  Google Scholar 

  • Tsao N, Luh TY, Chou CK, Wu JJ, Lin YS, Lei HY (2001) Inhibition of group A streptococcus infection by carboxyfullerene. Antimicrob. Agents Chemother. 45: 1788-1793.

    Article  Google Scholar 

  • Tsao N, Luh TY, Chou CK, Chang TY, Wu JJ, Liu CC, Lei HY (2002) In vitro action of carboxyfullerene. J. Antimicrob. Chemother. 49: 641-649.

    Article  Google Scholar 

  • Tzeng SF, Lee JL, Kuo JS, Yang CS, Murugan P, Ai Tai L, Chu Hwang K (2002) Effects of malonate C60 derivatives on activated microglia. Brain Res. 940: 61-68.

    Article  Google Scholar 

  • Wang IC, Tai LA, Lee DD, Kanakamma PP, Shen CK, Luh TY, Cheng CH, Hwang KC (1999) C60 and water-soluble fullerene derivatives as antioxidants against radical-initiated lipid peroxida-tion. J. Med. Chem. 42: 4614-4620.

    Article  CAS  Google Scholar 

  • Witte P, Beuerle F, Hartnagel U, Lebovitz R, Savouchkina A, Sali S, Guldi D, Chronakis N, Hirsch A (2007) Water solubility, antioxidant activity and cytochrome C binding of four families of exohedral adducts of C(60) and C(70). Org. Biomol. Chem. 5: 3599-3613.

    Article  CAS  Google Scholar 

  • Wolff DJ, Mialkowski K, Richardson CF, Wilson SR (2001) C60-fullerene monomalonate adducts selectively inactivate neuronal nitric oxide synthase by uncoupling the formation of reactive oxygen intermediates from nitric oxide production. Biochemistry 40: 37-45.

    Article  CAS  Google Scholar 

  • Xiao L, Takada H, Maeda K, Haramoto M, Miwa N (2005) Antioxidant effects of water-soluble fullerene derivatives against ultraviolet ray or peroxylipid through their action of scavenging the reactive oxygen species in human skin keratinocytes. Biomed. Pharmacother. 59: 351-358.

    Article  CAS  Google Scholar 

  • Yang DY, Wang MF, Chen IL, Chan YC, Lee MS, Cheng FC (2001) Systemic administration of a water-soluble hexasulfonated C60 reduces cerebral ischemia-induced infarct volume in gerbils. Neurosci. Lett. 311: 121-124.

    Article  Google Scholar 

  • Yang J, Alemany LB, Driver J, Hartgerink JD, Barron AR (2007) Fullerene-derivatized amino acids: synthesis, characterization, antioxidant properties, and solid-phase peptide synthesis. Chem.Eur. J. 13: 2530-2545.

    Article  CAS  Google Scholar 

  • Zhong Y-W, Matsuo Y, Nakamura E (2006) Convergent synthesis of a polyfunctionalized fuller-ene by regioselective five-fold addition of a functionalized organocopper reagent to C60. Org. Lett. 8: 1463-1466.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Beuerle, F., Lebovitz, R., Hirsch, A. (2008). Antioxidant Properties of Water-Soluble Fullerene Derivatives. In: Cataldo, F., Da Ros, T. (eds) Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes. Carbon Materials: Chemistry and Physics, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6845-4_3

Download citation

Publish with us

Policies and ethics