Advertisement

On the Novelty of Nanotechnology: A Philosophical Essay

Chapter
Part of the The International Library of Ethics, Law and Technology book series (ELTE, volume 10)

Abstract

Nanotechnology has from its very beginning been surrounded with an aura of novelty that calls for a philosophical analysis. In order to do so, I first try to clarify the different meanings of the concept of novelty. This helps us understand that many paradoxes and fallacies dominate ordinary discourses on novelty, which any serious approach needs to avoid. Equipped with these conceptual clarifications, I discuss novelty first in science and engineering in general and point out the unique role that novelty plays in these areas. Then I discuss the novelty of nanotechnology by distinguishing between different levels and aspects of nanotechnology. The results allow reassessing public novelty claims about nanotechnology not only from an epistemological but also from ethical and political perspectives. I conclude with some remarks on the politics of producing and claiming novelty.

Keywords

Science Policy News Medium Scientific Revolution National Nanotechnology Initiative Ordinary Discourse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Allendorf, M. 1998. From Bunsen to VLSI: 150 years of growth in chemical vapor deposition technology. Interface (The Electrochemical Society) 7(1): 36–39. http://www.electrochem.org/dl/interface/spr/spr98/IF3-98-Pages36-39.pdf.
  2. Baird, D., and A. Shew. 2004. Probing the history of scanning tunneling microscopy. In Discovering the nanoscale, ed. D. Baird, A. Nordmann, and J. Schummer, 145–156. Amsterdam: IOS Press.Google Scholar
  3. Balzani, V., A. Credi, and M. Venturi. 2003. Molecular devices and machines: A journey into the nanoworld. Weinheim: Wiley-VCH.CrossRefGoogle Scholar
  4. Bauer, H.H. 2002. ‘Pathological science’ is not scientific misconduct (nor is it pathological). Hyle: International Journal for Philosophy of Chemistry 8: 5–20.Google Scholar
  5. Bensaude-Vincent, B. 1998. Eloge du mixte. Paris: Hachette.Google Scholar
  6. Daniel, H.-D. 1993. Guardians of science. Fairness and reliability of peer review. Weinheim: VCH.CrossRefGoogle Scholar
  7. Ede, A. 2007. The rise and decline of colloid science in North America, 1900–1935. Aldershot: Ashgate.Google Scholar
  8. Furukawa, Y. 1998. Inventing polymer science. Philadelphia: Chemical Heritage Foundation.Google Scholar
  9. Kawamoto, H. 2002. The history of liquid-crystal displays. Proceedings of the IEEE 90(4): 460–500.CrossRefGoogle Scholar
  10. Kelker, H. 1973. History of liquid crystals. Molecular Crystals and Liquid Crystals 21: 1–48.CrossRefGoogle Scholar
  11. Kuhn, T.S. 1962. The structure of scientific revolutions. Chicago: University of Chicago Press.Google Scholar
  12. Lehn, J.-M. 1992. ‘Supramolecular chemistry – Scope and perspectives: Molecules – Supramolecules – Molecular devices’ (Nobel Lecture 1987). In Nobel lectures, chemistry 1981–1990, ed. T. Frängsmyr and B.G. Malmström, 444–491. Singapore: World Scientific.Google Scholar
  13. Mody, C.C.M. 2004. How probe microscopists became nanotechnologists. In Discovering the nanoscale, ed. D. Baird, A. Nordmann, and J. Schummer, 119–133. Amsterdam: IOS Press.Google Scholar
  14. Monthioux, M., and V.L. Kuznetsov. 2006. Who should be given the credit for the discovery of carbon nanotubes? Carbon 44: 1621–1623.CrossRefGoogle Scholar
  15. Nordmann, A. 2006. Unsichtbare Ursprünge – Herbert Gleiter und der Beitrag der Materialwissenschaft. In Nanotechnologien im Kontext – Philosophische, ethische und gesellschaftliche Perspektiven, ed. A. Nordmann, J. Schummer, and A. Schwarz, 81–96. Berlin: Akademische Verlagsgesellschaft.Google Scholar
  16. NSTC/IWGN (National Science and Technology Council, Interagency Working Group on Nanoscience, Engineering and Technology). 1999. Nanotechnology research directions: Vision for nanotechnology R&D in the next decade. Washington, DC: National Science and Technology Council.Google Scholar
  17. Peyerimhoff, S.D. 2002. The development of computational chemistry in Germany. In Reviews in computational chemistry, vol. 18, ed. K.B. Lipkowitz and D.B. Boyd, 257–291. Weinheim: Wiley-VCH.Google Scholar
  18. Roberts, G.G. (ed.). 1990. Langmuir-Blodgett films. New York: Plenum Press.Google Scholar
  19. Roco, M.C., and W.S. Bainbridge (eds.). 2001. Societal implications of nanoscience and nanotechnology. Arlington: National Science Foundation. http://www.wtec.org/loyola/nano/NSET.Societal.Implications/nanosi.pdf.
  20. Schummer, J. 2004. ‘Societal and ethical implications of nanotechnology’: Meanings, interest groups, and social dynamics. Techne – Research in Philosophy and Technology 8(2): 56–87.Google Scholar
  21. Schummer, J. 2009. Nanotechnologie: Spiele mit Grenzen. Frankfurt: Suhrkamp.Google Scholar
  22. Sherman, J.D. 1999. Synthetic zeolites and other microporous oxide molecular sieves. Proceedings of the National Academy of Sciences of the United States of America 96(7): 3471–3478. http://www.pnas.org/cgi/content/full/96/7/3471.
  23. Simões, A., and K. Gavroglu. 2001. Issues in the history of theoretical and quantum chemistry, 1927–1960. In Chemical sciences in the 20th century, ed. C. Reinhardt, 51–74. Weinheim: Wiley-VCH.CrossRefGoogle Scholar
  24. Szejtli, J. 1996. Historical background. In Comprehensive supramolecular chemistry, vol. 3 (‘Cyclodextrins’), ed. J.L. Atwood et al., 1–3. Oxford: Pergamon Press.Google Scholar
  25. Woyke, A. 2008. Überlegungen zur Verortung der Nanotechnologie in einem wissenschafts- und technikgeschichtlichen Kontinuum. Berichte zur Wissenschaftsgeschichte 31: 58–67.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of KarlsruheKarlsruheGermany

Personalised recommendations