Polar Organic Micropollutants In The Water Cycle

  • Juliane Hollender
  • Heinz Singer
  • Christa S. McArdell
Part of the NATO Science for Peace and Security Series book series (NAPSC)

Emerging contaminants such as pharmaceuticals and biocides are released from sewage treatment plants and also from agricultural fields. They are increasingly monitored in surface and groundwater but are not yet included as priority compounds in European guidelines. Analysis of these mostly polar compounds and their sometimes relevant metabolites is more and more carried out by LC-MS-MS. The main elimination processes in sewage treatment plants are sorption and biodegradation. Both processes are difficult to predict in case of polar compounds and therefore fate studies are essential.


micropollutants pharmaceuticals biocides metabolites emerging contaminants priority compounds tracer chemical analysis LC-MS monitoring surface water groundwater 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bester, K., 2006, Personal Care Compounds in the Environment Pathways, Fate and Methods for Determination ISBN-13: 978-3-527-31567-3 published by Wiley-VCH, Weinheim.CrossRefGoogle Scholar
  2. Blüm, W., McArdell, C.S., Hoehn, E., Schaubhut, R., Labhart, W., and Bertschi, S., 2005, Organische Spurenstoffe im Grundwasser des Limmattales: Ergebnisse der Untersuchungskampagne 2004. Zürich: Baudirektion Kanton Zürich, AWEL.Google Scholar
  3. Bendz, D., Paxéus, N.A., Ginn, T.R., and Loge, F.J., 2005, Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Höje River in Sweden. J. Hazard. Mat. 122: 195-204.CrossRefGoogle Scholar
  4. Boxall, A.B., Sinclair, C.J., Fenner, K., Kolpin, D., and Maund, S.J., 2004, When synthetic chemicals degrade in the environment. Environ. Sci. Technol. 38: 369A-375A.CrossRefGoogle Scholar
  5. Buerge, I.J., Poiger, T., Müller, M.D., and Buser, H.-D., 2006, Combined sewer overflows to surface waters detected by the anthropogenic marker caffeine Environ. Sci. Technol. 40: 4096-4102.CrossRefGoogle Scholar
  6. D’Ascenzo, G., Di Corcia, A., Gentili, A., Mancini, R., Mastropasqua, R., Nazzari, M., and Samperi, R., 2005, Fate of natural estrogen conjugates in municipal sewage transport and treatment facilities. Sci. Tot. Environ. 302: 199-209.CrossRefGoogle Scholar
  7. Gerecke, A.C., Schärer, M., Singer, H.P., Müller, S.R., Schwarzenbach, R.P., Sägesser, M., Ochsenbein, U., and Popow, G., 2002, Sources of pesticides in surface waters in Switzerland: pesticide load through waste water treatment plants - current situation and reduction potential. Chemosphere 48: 307-315.CrossRefGoogle Scholar
  8. Giger, W., Schaffner C., and Kohler H.-P., 2006, Benzotriazole and Tolyltriazole as aquatic contaminants. I. Input and occurrence in rivers and lakes. Environ. Sci. Technol. 40: 7186-7192.CrossRefGoogle Scholar
  9. Göbel A., McArdell C.S., Joss A., Siegrist H., and Giger W., 2007, Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies. Sci. Tot. Environm. 372: 361-371.CrossRefGoogle Scholar
  10. Göbel, A., Thomsen, A., McArdell, C.S., Joss, A., and Giger, W., 2005, Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment, Environ. Sci. Technol. 39: 3981-3989.CrossRefGoogle Scholar
  11. Golet, E.M., Xifra, I., Siegrist, H., Alder, A.C., and Giger, W., 2003, Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil. Environ. Sci. Technol. 37: 3243-3249.CrossRefGoogle Scholar
  12. Hanke, I., Singer, H., McArdell, C.S., Brennwald, M., Traber, D., Muralt, R., Herold, T., Oechslin, R., and Kipfer, R., 2007, Arzneimittel und Pestizide im Grundwasser. GWA 3: 187-196.Google Scholar
  13. Hernández, F., Ibánez, M., Sancho, J.V., and Pozo, O.J., 2004, Comparison of different mass spectrometric techniques combined with liquid chromatography for confirmation of 21 pesticides in environmental water based on the use of identification points. Anal. Chem. 76: 4349-4357.CrossRefGoogle Scholar
  14. Hernández, F., Pozo, Ó.J., Sancho, J.V., López, F.J., Marín, J.M., and Ibánez, M., 2005, Strategies for quantification and confirmation of multi-class polar pesticides and transformation products in water by LC-MS2 using triple quadrupole and hybrid quadrupole time-of-flight analyzers. TrAC 24: 596-612.Google Scholar
  15. Hollender, J., Singer, H., and Fenner, K., 2006, Combination of linear ion trap with Orbitrap technology to detect and identify metabolites in environmental water samples, in: Proc. 2nd Int. Workshop Liq. Chromatogr.-Tandem Mass Spectrom. Screening Trace Level Quantitation Environ. Food Samples, Barcelona, Spain, September 2006, p. 34.Google Scholar
  16. Hou, B.K., Wackett, L.P., and Ellis, L.B.M., 2003, Microbial pathway prediction: A functional group approach. J. Chem. Inf. Comp. Sci. 43: 1051-1057.Google Scholar
  17. Hu, Q., Noll, R.J., Li, H., Makarov, A., Hardman, M., and Cooks, R.G., 2005, The Orbitrap: A new mass spectrometer. J. Mass Spectrom. 40: 430-443.CrossRefGoogle Scholar
  18. Hummel, D., Löffler, D., Fink, G., and Ternes, T.A., 2006, Simultaneous determination of psychoactive drugs and their metabolites in aqueous matrices by liquid chromatography mass spectrometry Environ. Sci. Technol. 40: 7321-7328.CrossRefGoogle Scholar
  19. Jahnel, J., Neamtu, M., Schudoma, D., and Frimmel, F.H., 2006, Scientific risk assessment of considered water relevant substances. Acta hydrochim. hydrobiol. 34: 389-397.CrossRefGoogle Scholar
  20. Jaworska, J., Dimitrov, S., Nikolova, N., and Mekenyan, O., 2002, Probabilistic assessment of biodegradability based on metabolic pathways: Catabol system. SAR QSAR Environ. Res. 13: 307-323.CrossRefGoogle Scholar
  21. Joss, A., Keller, E., Alder, A.C., Göbel, A., McArdell, C.S., Ternes, T., and Siegrist, H., 2005, Removal of pharmaceuticals and fragrances in biological wastewater treatment. Wat. Res. 39: 3139-3152.CrossRefGoogle Scholar
  22. Kolpin, D.W., Schnoebelen, D.J., and Thurman, E.M., 2004, Degradates provide insight to spatial and temporal trends of herbicides in ground water. Ground Water 42: 601-608.CrossRefGoogle Scholar
  23. Kolpin, D.W., Kalkhoff, S.J., Goolsby, D.A., Sneck-Fahrer, D.A., and Thurman, E.M., 1997, Occurrence of selected herbicides and herbicide degradation products in Iowa’s Grond Water, 1995. Groundwater 35: 679-688.Google Scholar
  24. Kolpin, D.W., Furlong, E.T., Meyer, M.T., Thurman, E.M., Zaugg, S.D., Barber, L.B., and Buxton, H.T., 2002, Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: A national reconnaissance. Env. Sci. Technol. 36: 1202-1211.CrossRefGoogle Scholar
  25. Leu, C., Singer, H., Stamm, C., Müller, S.R., and Schwarzenbach, R.P., 2004, Variability of herbicide losses from 13 fields to surface water within a small catchment after a controlled herbicide application. Environ. Sci. Technol. 38: 3835-3841.CrossRefGoogle Scholar
  26. Makarov, A., Denisov, E., Kholomeev, A., Balschun, W., Lange, O., Strupat, K., and Horning, S., 2006, Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer. Anal. Chem. 78: 2113-2120.CrossRefGoogle Scholar
  27. McArdell, C.S., Alder, A.C., Göbel, A., Löffler, D., Suter, M.J.F., and Ternes, T.A., 2007, Analytical Methods. In Human Pharmaceuticals, Hormones and Fragrances: The challenge of micropollutants in urban water management edited by Ternes, T.A., Joss, A. ISBN: 1843390930. Published by IWA Publishing, London, UK.Google Scholar
  28. Miao, X.-S., Yang, J.-J., and Metcalfe, C.D., 2005, Carbamazepine and its metabolites in wastewater and in biosolids in a municipal wastewater treatment plant. Environ. Sci. Technol. 39: 469-7475.CrossRefGoogle Scholar
  29. Muir, D.C.G., and Howard, P.H., 2006, Are there other persistent organic pollutants? A challenge for environmental chemists. Environ. Sci. Technol. 40: 7157-7166.CrossRefGoogle Scholar
  30. Öllers, S., Singer, H.P., Fässler, P., and Müller, S.R., 2001, Simultaneous quantification of neutral and acidic pharmaceuticals and pesticides at the low-ng/ l level in surface and waste water J. Chromatogr. A 911: 225-234.CrossRefGoogle Scholar
  31. Ort, C., McArdell, C.S., and Giger, W., 2007, Benzotriazole and Tolyltriazole as Aquatic Contaminants: Tracers for Municipal Wastewater Infiltration into Groundwater. In preparationGoogle Scholar
  32. Reemtsma, T., Weiss, S., Müeller, J., Petrovic, M., Gonzalez, S., Barcelo, D., Ventura, F., and Knepper, T.P., 2006, Polar pollutants entry into the water cycle by municipal wastewater: A european perspective. Environ. Sci. Technol. 40: 5451-5458.CrossRefGoogle Scholar
  33. Richardson, S.D., Ternes, T.A., 2005, Water Analysis: Emerging contaminants and current issues. Anal. Chem. 77: 3807-3838.CrossRefGoogle Scholar
  34. Sacher, F., Lange, F.G., Brauch, H.-J., and Blankenhorn, I., 2001. Pharmaceuticals in groundwaters. Analytical methods and results of a monitoring program in Baden-Württemberg, Germany. J. Chromatrogr. A 938: 199-210.CrossRefGoogle Scholar
  35. Schluep, M., Thomann, M., Häner, A., and Gälli, R., 2006, Organische Mikroverunreinigungen und Nährstoffhaushalt. Eine Standortbestimmung für die Siedlungswasserwirtschaft. UmwetlWissen Nr. 0614. Bundesamt für Umwelt, Bern.Google Scholar
  36. Schwaiger, J., Ferling, H., Mallow, U., Wiontermayer, H., and Negele, R.D., 2004, Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part I: Histopathological alterations and bioaccumulation in rainbow trout. Aquatic Toxicol. 68: 141-150.CrossRefGoogle Scholar
  37. Stamm Ch., Siber, R., Chèvre, N., Fenner, K., and Singer, H., 2006, Monitoring von Pestizidbelastungen in Oberflächengewässern, GWA Gas, Wasser, Abwasser 8: 629-636.Google Scholar
  38. Stoob, K., Singer, H.P., Stettler, S., Hartmann, N., Mueller, S.R., and Stamm C.H., 2006, Exhaustive extraction of sulfonamide antibiotics from aged agricultural soils using pressurized liquid extraction J. Chromatgr. A 1128: 1-9.CrossRefGoogle Scholar
  39. Ternes, T.A., 1998, Occurrence of drugs in German sewage treatment plants and rivers. Wat. Res. 32: 3245-3260.CrossRefGoogle Scholar
  40. Ternes, T.A., Joss, A., and Siegrist, H., 2004, Scrutinizing Pharmaceuticals and personal care products in Wastewater Treatment. Environ. Sci. Technol. 38: 392A-399A.CrossRefGoogle Scholar
  41. Ternes, T.A., and Joss, A., 2007, Human Pharmaceuticals, Hormones and Fragrances: The challenge of micropollutants in urban water management edited by. ISBN: 1843390930. Published by IWA Publishing, London, UKGoogle Scholar
  42. TGD, 1996, Technical guidance document in support of commission directive 93/67/EEC on risk assessment for new notified substances and commission regulation, EC, No 1488/94 on risk assessment of existing substances, Part II, Brussels, ISBN 92-827-8012-0.Google Scholar
  43. Thurman, E.M., Ferrer, I., Zweigenbaum, J.A., García-Reyes, J.F., Woodman, M., and Fernández-Alba, A.R., 2005, Discovering metabolites of post-harvest fungicides in citrus with liquid chromatography/time-of-flight mass spectrometry and ion trap tandem mass spectrometry. J. Chromatogr. A 1082: 71-80.CrossRefGoogle Scholar
  44. Triebskorn, R., Casper H., Heyd, A., Eikemper, R., Köhler, H.R., and Schwaiger, J., 2004, Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part II: Cytological effects in liver, kidney, gills and intestine of rainbow trout (Oncorhynchus mykiss). Aquatic Toxicol. 68: 151-168.CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Juliane Hollender
    • 1
  • Heinz Singer
    • 1
  • Christa S. McArdell
    • 1
  1. 1.Swiss Federal Institute of Aquatic Science and Technology - EAWAGSwitzerland

Personalised recommendations