Advertisement

North Atlantic Deep Water Formation in the Labrador Sea, Recirculation Through the Subpolar Gyre, and Discharge to the Subtropics

  • Thomas Haine
  • Claus Böning
  • Peter Brandt
  • Jürgen Fischer
  • Andreas Funk
  • Dagmar Kieke
  • Erik Kvaleberg
  • Monika Rhein
  • Martin Visbeck
Chapter

North Atlantic Deep Water (NADW) is a water mass that is central to the oceanography of the deep Atlantic, the global meridional overturning circulation (MOC), and the climate of the Earth itself. The subpolar Atlantic is an especially important place for these phenomena because of the large changes wrought on NADW in these basins. Indeed, once it is discharged past 45°N, NADW temperature and salinity are altered at substantially slower rates before encountering Circumpolar Deep Waters in the subpolar ocean of the southern hemisphere (McCartney and Talley 1984; Reid et al. 1977). Formation of NADW, recirculation through the subpolar gyre, and injection into the subtropical ocean past Newfoundland are therefore central issues to ASOF science and are discussed here.

Keywords

Mooring Line North Atlantic Deep Water Subpolar Gyre Labrador Current Deep Western Boundary Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azetsu-Scott, K., E. P. Jones, I. Yashayaev, and R. M. Gershey (2003), Time series study of CFC concentrations in the Labrador Sea during deep and shallow convection regimes (1991–2000), J. Geophys. Res., 108, doi:10.1029/2002JC001,317.Google Scholar
  2. Baehr, J., K. Keller, and J. Marotzke (2007), Detecting potential changes in the meridional overturning circulation at 26°N in the Atlantic, Clim. Change, doi:10.1007/S10584–006-9153–7.Google Scholar
  3. Beckmann, A., and R. Döscher (1997), A method for improved representation of dense water spreading over topography in geopotential-coordinate models, J. Phys. Oceanogr., 27, 581–591.CrossRefGoogle Scholar
  4. Bentsen, M., H. Drange, T. Furevik, and T. Zhou (2004), Simulated variability of the Atlantic meridional overturning circulation, Clim. Dyn., 22, 701–720.CrossRefGoogle Scholar
  5. Bersch, M., J. Meincke, and A. Sy (1999), Interannual thermohaline changes in the northern North Atlantic 1991–1996, Deep Sea Res., Part II, 46, 55–75.CrossRefGoogle Scholar
  6. Böning, C. W., F. O. Bryan, W. R. Holland, and R. Döscher (1996), Deep water formation and meridional overturning in a high resolution model of the North Atlantic, J. Phys. Oceanogr., 26, 1141–1164.CrossRefGoogle Scholar
  7. Böning, C. W., M. Rhein, J. Dengg, and C. Dorow (2003), Modeling CFC inventories and formation rates of Labrador Sea Water, Geophys. Res. Lett., 30, 1050, doi:10.1029/ 2002GL014, 855.CrossRefGoogle Scholar
  8. Böning, C. W., M. Scheinert, J. Dengg, A. Biastoch, and A. Funk (2006), Decadal variability of subpolar gyre transport and its reverberation in the North Atlantic overturning, Geophys. Res. Lett., 33, L21S01, doi:10.1029/2006GL026, 906.CrossRefGoogle Scholar
  9. Bower, A. S. and H. D. Hunt (2000), Lagrangian observations of the Deep Western Boundary Current in the North Atlantic Ocean. Part I: Large-scale pathways and spreading rates, J. Phys. Oceanogr., 30, 764–783.CrossRefGoogle Scholar
  10. Bower, A. S., B. le Cann, T. Rossby, W. Zenk, J. Gould, K. Speer, P. L. Richardson, M. D. Prater, and H.-M. Zhang (2002), Directly measured middepth circulation in the northeastern North Atlantic Ocean, Nature, 419, 603–607.CrossRefGoogle Scholar
  11. Brandt, P., A. Funk, L. Czeschel, C. Eden, and C. Böning (2007), Ventilation and transformation of Labrador Sea Water and its rapid export in the deep Labrador Current, J. Phys. Oceanogr., 73, 946–961.CrossRefGoogle Scholar
  12. Bryan, F. O., C. W. Böning, and W. R. Holland (1995), On the midlatitude circulation in a high resolution model of the North Atlantic, J. Phys. Oceanogr., 25, 289–305.CrossRefGoogle Scholar
  13. Bryden, H. L., H. R. Longworth, and S. A. Cunningham (2005), Slowing of the Atlantic meridional overturning circulation at 25°N, Nature, 438, doi:10.1038/nature04,385.Google Scholar
  14. Clarke, R. A. (1984), Transport through the Cape Farewell-Flemish Cap section, Rapp. P.-v. Reun. Cons. Int. Explor. Mer., 185, 120–130.Google Scholar
  15. Clarke, R. A. and J. C. Gascard (1983), The formation of Labrador Sea Water: Part 1, large scale processes, J. Phys. Oceanogr., 13, 1779–1797.CrossRefGoogle Scholar
  16. Clarke, R. A., R. M. Hendry, and I. Yashayaev (1998), A western boundary current meter array in the North Atlantic near 42°N, Int. WOCE Newsl., 33, 33–34.Google Scholar
  17. Cunningham, S. A. and T. W. N. Haine (1995), On Labrador Sea Water in the Eastern North Atlantic. Part I: A synoptic circulation inferred from a minimum in potential vorticity, J. Phys. Oceanogr., 25, 649–665.CrossRefGoogle Scholar
  18. Cuny, J., P. B. Rhines, P. P. Niiler, and S. Bacon (2002), Labrador Sea boundary currents and the fate of the Irminger Sea Water, J. Phys. Oceanogr., 32, 627–647.CrossRefGoogle Scholar
  19. Cuny, J., P. B. Rhines, F. Schott, and J. Lazier (2005), Convection above the Labrador Continental Slope, J. Phys. Oceanogr., 35, 489–511.CrossRefGoogle Scholar
  20. Curry, R. G., M. S. McCartney, and T. M. Joyce (1998), Oceanic transport of subpolar climate signals to mid-depth subtropical waters, Nature, 391, 575–577.CrossRefGoogle Scholar
  21. Czeschel, L. (2004), The role of eddies for the deep water formation in the Labrador Sea, Ph.D. thesis, Kiel University, Leibniz-Institut für Meereswissenschaften, 101 pp.Google Scholar
  22. Dengler, M., J. Fischer, F. A. Schott, and R. Zantopp (2006), Variability of the Deep Western Boundary Current east of the Grand Banks, Geophys. Res. Lett., 33, doi:10.1029/ 2006GL026,702.Google Scholar
  23. Dickson, R. R. and J. Brown (1994), The production of North Atlantic Deep Water: Sources, rates and pathways, J. Geophys. Res., 99, 12319–12341.CrossRefGoogle Scholar
  24. Dickson, R. R., E. M. Gmitrovic, and A. J. Watson (1990), Deep-water renewal in the northern North Atlantic, Nature, 344, 848–850.CrossRefGoogle Scholar
  25. Dickson, R. R., J. Lazier, J. Meincke, P. Rhines, and J. Swift (1996), Long-term coordinated changes in the convective activity of the North Atlantic, Prog. Oceanogr., 38, 241–295.CrossRefGoogle Scholar
  26. Dietrich, G. (1969), A new atlas of the northern North Atlantic Ocean, Deep Sea Res., supplement to 16, 31–34.Google Scholar
  27. Dietrich, G., K. Kalle, W. Kraus, and G. Siedler (1980), General oceanography, an introduction, 2nd ed., Wiley, New York, 626 pp.Google Scholar
  28. Döscher, R., C. W. Böning, and P. Herrmann (1994), Response of circulation and heat transport in the North Atlantic to changes in thermohaline forcing in northern latitudes: A model study, J. Phys. Oceanogr., 24, 2306–2320.CrossRefGoogle Scholar
  29. Eckart, C. (1948), An analysis of the stirring and mixing processes in incompressible fluids, J. Mar. Res., 7, 265–275.Google Scholar
  30. Eden, C. and C. Böning (2002), Sources of eddy kinetic energy in the Labrador Sea, J. Phys. Oceanogr., 32, 3346–3363.CrossRefGoogle Scholar
  31. Eden, C. and J. Willebrand (2001), Mechanism of interannual to decadal variability of the North Atlantic circulation, J. Climate, 14, 29–70.Google Scholar
  32. Faure, V. and K. Speer (2005), Labrador Sea Water Circulation in the Northern North Atlantic Ocean, Deep Sea Res., Part II, 52, 565–581.CrossRefGoogle Scholar
  33. Fischer, J. and F. A. Schott (2002), Labrador Sea Water tracked by profiling floats–From the boundary current into the open North Atlantic, J. Phys. Oceanogr., 32, 573–584.CrossRefGoogle Scholar
  34. Fischer, J., F. A. Schott, and M. Dengler (2004), Boundary circulation at the exit of the Labrador Sea, J. Phys. Oceanogr., 34, 1548–1570.CrossRefGoogle Scholar
  35. Ganachaud, A. and C. Wunsch (2000), Improved estimated of global ocean circulation, heat transport and mixing from hydrographic data, Nature, 408, 453–457.CrossRefGoogle Scholar
  36. Gerdes, R., J. Hurka, M. Karcher, F. Kauker, and C. Köoberle (2005), Simulated history of convection in the Greenland and Labrador Seas 1948–2001, AGU, Geophysical Monograph Series 158, 370 pp.Google Scholar
  37. Getzlaff, K., C. Böning, and J. Dengg (2006), Lagrangian perspectives of deep water export from the subpolar North Atlantic, Geophys. Res. Lett., 38, doi:10.1029/2006GLO26470.Google Scholar
  38. Gray, S. L. and T. W. N. Haine (2001), Constraining a North Atlantic ocean general circulation model with chlorofluorocarbon observations, J. Phys. Oceanogr., 31, 1157–1181.CrossRefGoogle Scholar
  39. Haine, T. W. N. (2006), On tracer boundary conditions for geophysical reservoirs: How to find the boundary concentration from a mixed condition, J. Geophys. Res., 111, C05003, doi:10.1029/2005JC003, 215.CrossRefGoogle Scholar
  40. Haine, T. W. N. (2007), What did the Viking discoverers of America know of the North Atlantic environment? Weather, in press.Google Scholar
  41. Haine, T. W. N. and T. M. Hall (2002), A generalized transport theory: Water-mass composition and age, J. Phys. Oceanogr., 32, 1932–1946.CrossRefGoogle Scholar
  42. Haine, T. W. N., K. J. Richards, and Y. Jia (2003), Chlorofluorocarbon constraints on North Atlantic ocean ventilation, J. Phys. Oceanogr., 33, 1798–1814.CrossRefGoogle Scholar
  43. Häkkinen, S. (1999), Variability of the simulated meridional heat transport in the North Atlantic for the period 1951–1993, J. Geophys. Res., 104, 10991–11007.CrossRefGoogle Scholar
  44. Häkkinen, S. and P. B. Rhines (2004), Decline of subpolar North Atlantic circulation during the 1990s, Science, 304, 555–559.CrossRefGoogle Scholar
  45. Hall, T. M., T. W. N. Haine, M. Holzer, D. A. LeBel, F. Terenzi, and D. W. Waugh (2007), Ventilation rates estimated from tracers in the presence of mixing, J. Phys. Oceanogr., in press.Google Scholar
  46. Hátún, H., A. B. Sandø, H. Drange, B. Hansen, and H. Valdimarsson (2005), Influence of the Atlantic subpolar gyre on the thermohaline circulation, Science, 309, 1841–1844.CrossRefGoogle Scholar
  47. Hirschi, J., P. D. Killworth, and J. R. Blundell (2007), Subannual, seasonal and interannual variability of the North Atlantic meridional overturning circulation, J. Phys. Oceanogr., 37, 1246–1265.CrossRefGoogle Scholar
  48. Houghton, R. W. and M. Visbeck (2002), Quasi-decadal salinity fluctuations in the Labrador Sea, J. Phys. Oceanogr., 32, 687–701.CrossRefGoogle Scholar
  49. Isemer, H.-J. and L. Hasse (1987), The Bunker climate atlas of the North Atlantic ocean, Vol. 2: Air-sea interactions, Springer-Verlag New York Inc., New York, NY 218 pp.Google Scholar
  50. Käse, R. H., A. Biastoch, and D. B. Stammer (2001), On the mid-depth circulation in the Labrador and Irminger seas, Geophys. Res. Lett., 28, 3433–3436.CrossRefGoogle Scholar
  51. Katsman, C. A., M. A. Spall, and R. S. Pickart (2004), Boundary current eddies and their role in the restratification of the Labrador Sea, J. Phys. Oceanogr., 34, 1967–1983.CrossRefGoogle Scholar
  52. Khatiwala, S. and M. Visbeck (2000), An estimate of the eddy-induced circulation in the Labrador Sea, Geophys. Res. Lett., 27, 2277–2280.CrossRefGoogle Scholar
  53. Khatiwala, S., P. Schlosser, and M. Visbeck (2002), Rates and mechanisms of water mass transformation in the Labrador Sea as inferred from tracer observations, J. Phys. Oceanogr., 32, 666–686.CrossRefGoogle Scholar
  54. Kieke, D., M. Rhein, L. Stramma, W. M. Smethie, J. L. Bullister, and D. A. LeBel (2007), Changes in the pool of Labrador Sea Water in the subpolar North Atlantic, Geophys. Res. Lett., 34, L06605, doi:10.1029/2006GL028959.CrossRefGoogle Scholar
  55. Kieke, D., M. Rhein, L. Stramma, W. M. Smethie, D. A. LeBel, and W. Zenk (2006b), Changes in the CFC inventories and formation rates of Upper Labrador Sea Water, 1997–2001, J. Phys. Oceanogr., 36, 64–86.CrossRefGoogle Scholar
  56. Koltermann, K. P., A. V. Sokov, V. P. Tereschenko, S. A. Bobroliubov, K. Lorbacher, and A. Sy (1999), Decadal changes in the thermohaline circulation of the North Atlantic, Deep Sea Res., Part II, 46, 109–138.Google Scholar
  57. Kvaleberg, E. and T. W. N. Haine (2007), Recirculating flow in the Labrador and Irminger Seas: Impact of bathymetry, J. Phys. Oceanogr., under revision.Google Scholar
  58. Kvaleberg, E., T. W. N. Haine, and D. W. Waugh (2007), Labrador Sea Water transport rates and pathways in the subpolar North Atlantic ocean, J. Geophys. Res., under revision.Google Scholar
  59. Lavender, K. L., R. E. Davis, and W. B. Owens (2000), Mid-depth recirculation observed in the interior Labrador and Irminger Seas by direct velocity measurements, Nature, 407, 66–69.CrossRefGoogle Scholar
  60. Lavender, K. L., W. B. Owens, and R. E. Davis (2005), The mid-depth circulation of the subpolar North Atlantic Ocean as measured by subsurface floats, Deep Sea Res., Part I, 52, 767–785.CrossRefGoogle Scholar
  61. Lazier, J. R. N. (1980), Oceanographic conditions at O.W.S. Bravo, 1964–1974, Atmosphere-Ocean, 18, 227–238.Google Scholar
  62. Lazier, J. R. N., R. Hendry, A. Clarke, I. Yashayaev, and P. Rhines (2002), Convection and restratification in the Labrador Sea, Deep Sea Res., Part I, 49, 1819–1835.CrossRefGoogle Scholar
  63. Legg, S., R. W. Hallberg, and J. B. Girton (2006), Comparison of entrainment in overflows simulated by z-coordinate, isopycnal and nonhydrostatic models, Ocean Modelling, 11, 69–97.CrossRefGoogle Scholar
  64. Lilly, J. M., P. B. Rhines, F. Schott, K. Lavender, J. Lazier, U. Send, and E. D’Asaro (2003), Observations of the Labrador Sea eddy field, Prog. Oceanogr., 59, 75–176.CrossRefGoogle Scholar
  65. Lumpkin, R. and K. Speer (2003), Large-scale vertical and horizontal circulation in the North Atlantic ocean, J. Phys. Oceanogr., 33, 1902–1920.CrossRefGoogle Scholar
  66. Marsh, R. (2000), Recent variability of the North Atlantic thermohaline circulation inferred from surface heat and freshwater fluxes, J. Climate, 13, 3239–3260.CrossRefGoogle Scholar
  67. Marsh, R., S. A. Josey, A. J. G. Nurser, B. A. de Cuevas, and A. C. Coward (2005), Water mass transformation in the North Atlantic over 1985–2002 simulated in an eddy-permitting model, Ocean Sci., 1, 127–144.CrossRefGoogle Scholar
  68. Marshall, J. and F. Schott (1999), Open-ocean convection: Observations, theory and models, Rev. Geophys., 37, 1–64.CrossRefGoogle Scholar
  69. Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey (1997), A finite volume, incompressible Navier Stokes model for studies of the ocean on parallel computers, J. Geophys. Res., 102, 5753–5766.CrossRefGoogle Scholar
  70. Mauritzen, C. and S. Häkkinen (1999), On the relationship between dense water formation and the “meridional overturning cell” in the North Atlantic Ocean, Deep Sea Res., Part I, 46, 877–894.CrossRefGoogle Scholar
  71. McCartney, M. S. (1992), Recirculating components to the deep boundary current of the northern North Atlantic, Prog. Oceanogr., 29, 283–383.CrossRefGoogle Scholar
  72. McCartney, M. S. and L. D. Talley (1982), The subpolar mode water of the North Atlantic, J. Phys. Oceanogr., 12, 1169–1188.CrossRefGoogle Scholar
  73. McCartney, M. S., and L. D. Talley (1984), Warm-to-cold water conversion in the northern North Atlantic Ocean, J. Phys. Oceanogr., 14, 922–935.CrossRefGoogle Scholar
  74. Meinen, C. S. and D. R. Watts (2000), Vertical structure and transport on a transect across the North Atlantic Current near 42oN: Time series and mean, J. Geophys. Res., 105, 21869–21891.CrossRefGoogle Scholar
  75. Menemenlis, D., et al. (2005), NASA supercomputer improves prospects for ocean climate research, EOS, 86, 89, 96.Google Scholar
  76. Mizoguchi, K., S. L. Morey, J. Zavala-Hidalgo, N. Suginohara, S. Häkkinen, and J. J. O’Brien (2003), Convective activity in the Labrador Sea: Preconditioning associated with decadal variability in subsurface ocean stratification, J. Geophys. Res., 108, doi:10.1029/2002JC001,735.Google Scholar
  77. Molinari, R. L. and R. A. Fine (1988), A continuous deep western boundary current between Abaco (26.5°N) and Barbados (13°N), Deep Sea Res., 35, 1441–1450.CrossRefGoogle Scholar
  78. Molinari, R. L., R. A. Fine, W. D. Wilson, R. Curry, J. Abell, and M. McCartney (1998), The arrival of recently formed Labrador Sea Water in the Deep Western Boundary Current at 26.5N, Geophys. Res. Lett., 25, 2249–2252.CrossRefGoogle Scholar
  79. Myers, P. G. and C. Donnelly (2007), Water mass transformation and formation in the Labrador Sea, J. Climate, submitted.Google Scholar
  80. Nurser, A. J. G. and J. C. Marshall (1991), On the relationship between subduction rates and diabatic forcing of the mixed layer, J. Phys. Oceanogr., 21, 1793–1802.CrossRefGoogle Scholar
  81. Nurser, A. J. G., R. Marsh, and R. G. Williams (1999), Diagnosing water mass formation from air-sea fluxes and surface mixing, J. Phys. Oceanogr., 29, 1468–1487.CrossRefGoogle Scholar
  82. Orsi, A. H., G. C. Johnson, and J. L. Bullister (1999), Circulation, mixing, and production of Antarctic bottom water, Prog. Oceanogr., 43, 55–109.CrossRefGoogle Scholar
  83. Pickart, R. S. and M. A. Spall (2007), Impact of Labrador Sea convection on the North Atlantic meridional overturning circulation, J. Phys. Oceanogr., 37, 2207–2227.CrossRefGoogle Scholar
  84. Pickart, R. S., W. M. Smethie, J. R. N. Lazier, E. P. Jones, and W. J. Jenkins (1996), Eddies of newly formed upper Labrador Sea water, J. Geophys. Res., 101, 20711–20726.CrossRefGoogle Scholar
  85. Pickart, R. S., M. A. Spall, and J. R. N. Lazier (1997), Mid-depth ventilation in the western boundary current system of the sub-polar gyre, Deep Sea Res., Part I, 44, 1025–1054.CrossRefGoogle Scholar
  86. Pickart, R. S., D. J. Torres, and R. A. Clarke (2002), Hydrography of the Labrador Sea during active convection, J. Phys. Oceanogr., 32, 428–457.CrossRefGoogle Scholar
  87. Pickart, R. S., M. A. Spall, M. H. Ribergaard, G. W. K. Moore, and R. F. Milliff (2003), Deep convection in the Irminger Sea forced by the Greenland tip jet, Nature, 424, 152–156.CrossRefGoogle Scholar
  88. Pickart, R. S., D. J. Torres, and P. S. Fratantoni (2005), The East Greenland Spill Jet, J. Phys. Oceanogr., 35, 1037–1053.CrossRefGoogle Scholar
  89. Read, J. F. and W. J. Gould (1992), Cooling and freshening of the subpolar North Atlantic Ocean since the 1960s, Nature, 360, 55–57.CrossRefGoogle Scholar
  90. Reid, J. L., W. D. Nowlin, and W. C. Patzert (1977), On the characteristics and circulation of the southwestern Atlantic Ocean, J. Phys. Oceanogr., 7, 62–91.CrossRefGoogle Scholar
  91. Rhein, M., J. Fischer, W. M. Smethie, D. Smythe-Wright, R. F. Weiss, C. Mertens, D. H. Min, U. Fleischmann, and A. Putzka (2002), Labrador Sea Water: Pathways, CFC-inventory and formation rates, J. Phys. Oceanogr., 32, 648–665.CrossRefGoogle Scholar
  92. Salmon, R. (1998), Lectures on geophysical fluid dynamics, Oxford University Press, Oxford.Google Scholar
  93. Schmitz, W. J. (1996), On the world ocean circulation, some global features/North Atlantic circulation, Vol. 1, Technical Reports, Woods Hole Oceanographic Institution.Google Scholar
  94. Schmitz, W. J. and M. S. McCartney (1993), On the North Atlantic circulation, Rev. Geophys., 31, 29–49.CrossRefGoogle Scholar
  95. Schott, F. A., R. Zantopp, L. Stramma, M. Dengler, J. Fischer, and M. Wibaux (2004), Circulation and deep-water export at the western exit of the subpolar North Atlantic, J. Phys. Oceanogr., 34, 817–843.CrossRefGoogle Scholar
  96. Schott, F. A., J. Fischer, M. Dengler, and R. Zantopp (2006), The deep Labrador Current and its variability 1996–2005, Geophys. Res. Lett., 33, doi:10.1029/2006GL026,563.Google Scholar
  97. Smethie, W. M. and R. A. Fine (2001), Rates of North Atlantic Deep Water formation calculated from chlorofluorocarbon inventories, Deep Sea Res., Part I, 48, 189–215.CrossRefGoogle Scholar
  98. Smethie, W. M., R. A. Fine, A. Putzka, and E. P. Jones (2000), Tracing the flow of North Atlantic Deep Water using chlorofluorocarbons, J. Geophys. Res., 105, 14297–14323.CrossRefGoogle Scholar
  99. Spall, M. A. (2004), Boundary currents and watermass transformation in marginal seas, J. Phys. Oceanogr., 34, 1197–1213.CrossRefGoogle Scholar
  100. Spall, M. A. and R. S. Pickart (2001), Where does dense water sink? A subpolar gyre example, J. Phys. Oceanogr., 31, 810–826.CrossRefGoogle Scholar
  101. Spall, M. A. and R. S. Pickart (2003), Wind-driven recirculations and exchange in the Labrador and Irminger Seas, J. Phys. Oceanogr., 33, 1829–1845.CrossRefGoogle Scholar
  102. Speer, K., and E. Tziperman (1992), Rates of water mass formation in the North Atlantic ocean, J. Phys. Oceanogr., 22, 93–104.CrossRefGoogle Scholar
  103. Speer, K., H.-J. Isemer, and A. Biastoch (1995), Water mass formation from revised COADS data, J. Phys. Oceanogr., 25, 2444–2457.CrossRefGoogle Scholar
  104. Stramma, L. and M. Rhein (2002), Variability in the Deep Western Boundary Current in the equatorial Atlantic at 43°W, Geophys. Res. Lett., 28, 1623–1626.CrossRefGoogle Scholar
  105. Stramma, L., D. Kieke, M. Rhein, F. Schott, I. Yashayaev, and K. P. Koltermann (2004), Deep water changes at the western boundary of the subpolar North Atlantic during 1996 to 2001, Deep Sea Res., Part I, 51, 1033–1056.CrossRefGoogle Scholar
  106. Straneo, F., R. S. Pickart, and K. Lavender (2003), Spreading of Labrador Sea Water: An advective-diffusive study based on Lagrangian data, Deep Sea Res., Part I, 50, 701–719.CrossRefGoogle Scholar
  107. Sverdrup, H. U., M. W. Johnson, and R. H. Fleming (1942), The oceans: Their physics, chemistry and general biology, Prentice-Hall, Englewood Cliffs, NJ, 1087 pp.Google Scholar
  108. Swift, J. H. (1984), The circulation of the Denmark Strait and Iceland- Scotland overflow waters in the North Atlantic, Deep Sea Res., 31, 1339–1355.CrossRefGoogle Scholar
  109. Sy, A., M. Rhein, J. R. N. Lazier, K. P. Koltermann, J. Meincke, A. Putzka, and M. Bersch (1997), Surprisingly rapid spreading of newly formed intermediate waters across the North Atlantic Ocean, Nature, 386, 675–679.CrossRefGoogle Scholar
  110. Talley, L. D. (2003), Shallow, intermediate, and deep overturning components of the global heat budget, J. Phys. Oceanogr., 33, 530–560.CrossRefGoogle Scholar
  111. Talley, L. D. and M. S. McCartney (1982), Distribution and circulation of Labrador Sea Water, J. Phys. Oceanogr., 12, 1189–1205.CrossRefGoogle Scholar
  112. The Lab Sea Group (1998), The Labrador Sea deep convection experiment, Bull. Am. Meteor. Soc., 79, 2033–2058.CrossRefGoogle Scholar
  113. Thorpe, S. A. (2005), The turbulent ocean, Cambridge University Press, Cambridge/New York.Google Scholar
  114. Treguier, A. M., S. Theetten, E. Chassignet, T. Penduff, R. Smith, L. Talley, J. O. Beismann, and C. Böning (2005), The North Atlantic subpolar gyre in four high resolution models, J. Phys. Oceanogr., 35, 757–774.CrossRefGoogle Scholar
  115. Walin, G. (1982), On the relation between sea-surface heat flow and thermal circulation in the ocean, Tellus, 34, 187–195.CrossRefGoogle Scholar
  116. Walter, M., C. Mertens, and M. Rhein (2005), Mixing estimates from a large-scale hydrographic survey in the North Atlantic, Geophys. Res. Lett., 32(13), L13, 605, doi:10.1029/ 2005GL022, 471.CrossRefGoogle Scholar
  117. Warren, B. A. (1981), Deep circulation of the world ocean, in B. A. Warren and C. Wunsch (eds.), Evolution of physical oceanography, MIT, Cambridge, MA, pp. 6–41.Google Scholar
  118. Waugh, D. W., T. M. Hall, and T. W. N. Haine (2003), Relationship among tracer ages, J. Geophys. Res., 108, doi:10.1029/2002JC001,325.Google Scholar
  119. Waugh, D. W., T. W. N. Haine, and T. M. Hall (2004), Transport times and anthropogenic carbon in the subpolar North Atlantic, Deep Sea Res., Part I, 51, 1475–1491.Google Scholar
  120. Weiss, R. F., J. L. Bullister, R. H. Gammon, and M. J. Warner (1985), Atmospheric chlorofluoromethanes in the deep equatorial Atlantic, Nature, 314, 608–610.CrossRefGoogle Scholar
  121. Willebrand, J., et al. (2002), Circulation characteristics in three eddy permitting models of the North Atlantic, Prog. Oceanogr., 48, 123–161.CrossRefGoogle Scholar
  122. Wood, R. A., A. B. Keen, J. F. B. Mitchell, and J. M. Gregory (1999), Changing spatial structure of the thermohaline circulation in response to atmospheric CO2 forcing in a climate model, Nature, 399, 572–575.CrossRefGoogle Scholar
  123. Worthington, L. V. (1976), On the North Atlantic circulation, 6, The Johns Hopkins Oceanographic Studies, The Johns Hopkins University Press, Baltimore, MD, 110 pp.Google Scholar
  124. Wright, D. G. (1972), Northern sources of energy for the deep Atlantic, Deep Sea Res., 19, 865–877.Google Scholar
  125. Wüst, G. (1935), Aschichtung und Zirkulation des Atlantischen Ozeans, Vol. 6:1st Part, Engl. Transl., in W. J. Emery (ed.), The Stratosphere of the Atlantic Ocean, Amerind, New Delhi, 1978, 112 pp.Google Scholar
  126. Yashayaev, I. and A. Clarke (2006), Recent warming of the Labrador Sea, AZMP Bull. PMZA, 5, 12–20.Google Scholar
  127. Yashayaev, I., M. Bersch, H. van Aken, and A. Clarke (2004), A new study of the production, spreading and fate of the Labrador Sea Water in the subpolar North Atlantic, ASOF Newsl., 2, 20–23.Google Scholar
  128. Zhang, H., T. W. N. Haine, and D. W. Waugh (2005), Relationships between tracer age and dynamical fields in double gyre circulation, J. Phys. Oceanogr., 35, 2250–2267.CrossRefGoogle Scholar
  129. Zhao, J., J. Sheng, R. J. Greatbatch, K. Azetsu-Scott, and E. P. Jones (2006), Simulation of CFCs in the North Atlantic Ocean using an adiabatically corrected ocean circulation model, J. Geophys. Res., 111, doi:10.1029/2004JC002,814.Google Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Thomas Haine
    • 1
  • Claus Böning
    • 2
  • Peter Brandt
    • 2
  • Jürgen Fischer
    • 2
  • Andreas Funk
    • 2
  • Dagmar Kieke
    • 3
  • Erik Kvaleberg
    • 1
  • Monika Rhein
    • 3
  • Martin Visbeck
    • 2
  1. 1.Department of Earth and Planetary SciencesThe Johns Hopkins UniversityBaltimoreUSA
  2. 2.IfM-GEOMARGermany
  3. 3.Institut für UmweltphysikUniversität BremenGermany

Personalised recommendations