Advertisement

The Changing View on How Freshwater Impacts the Atlantic Meridional Overturning Circulation

  • Michael Vellinga
  • Bob Dickson
  • Ruth Curry

These days, it would be generally accepted that through its northward transport of warm tropical waters, the Atlantic Meridional Overturning Circulation (AMOC) contributes effectively to the anomalous warmth of northern Europe (Large and Nurser 2001; see also Rhines and Hakkinen 2003; Rhines et al., this volume). The oceanic fluxes of mass, heat and salt that pass north across the Greenland–Scotland Ridge from the Atlantic to the Arctic Mediterranean have now been soundly established by direct measurement under the EC VEINS and ASOF/MOEN programmes, as have the corresponding fluxes to the Arctic Ocean (Ingvaldsen et al. 2004a, b; Schauer et al. 2004). We now know that the 8.5 million cubic metres per second of warm salty Atlantic Water that passes north across this Ridge carries with it, on average, some 313 million megawatts of power and 303 million kilograms of salt per second (Østerhus et al. 2005). As it returns south across the Ridge in the form of the two dense overflows from Nordic Seas, its salinity has decreased from about 35.25 to 34.88 and its temperature has dropped from 8.5 °C to 2.0 °C or less. Not surprisingly, surrendering this amount of heat is of more than local climatic importance. To quantify its contribution to climate the AMOC was deliberately* shut down in the HadCM3 Atmosphere-Ocean General Circulation Model by artificially releasing a large pulse of freshwater in the northern North Atlantic (Wood et al. 2003; Vellinga 2004; Wood et al. 2006). The cooling of mean air temperature over the northern Norwegian Sea and Barents Sea in the first 10 years after shutdown exceeds −15 °C, and some lesser degree of cooling is evident over the entire Hemisphere. In addition, significant changes in rainfall are evident (especially at low latitudes, Vellinga and Wood 2002), as well as changes in sea level height (Levermann et al. 2005; Vellinga and Wood 2007). [*note that this is a ‘what if’ experiment. The response of the AMOC to more plausible scenarios of gradual anthropogenic greenhouse gas increase is discussed in Section 12.3.2 of this chapter.]

Keywords

Atlantic Meridional Overturning Circulation North Atlantic Oscillation Thermohaline Circulation Freshwater Flux Atlantic Meridional Overturning Circulation Variability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen MR, WJ Ingram (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419: 224–232CrossRefGoogle Scholar
  2. Banks HT (2000) Ocean heat transport in the South Atlantic in a coupled climate model. J. Geoph. Res. 105(C1): 1071–1091CrossRefGoogle Scholar
  3. Banks HT, RA Wood (2002) Where to look for anthropogenic climate change in the ocean? J. Climate 15: 879–891CrossRefGoogle Scholar
  4. Barnett TPD, W Pierce, R Schnur (2001) Detection of anthropogenic climate change in the world’s oceans. Science 292: 270–274CrossRefGoogle Scholar
  5. Bojariu R, G Reverdin (2002) Large-scale variability modes of freshwater flux and precipitation over the Atlantic. Clim. Dyn. 18: 369–381CrossRefGoogle Scholar
  6. Böning CW, FO Bryan, WR Holland, R Döscher (1996) Deep water formation and meridional overturning in a high-resolution model of the North Atlantic. J. Phys. Oceanogr. 26: 515–523CrossRefGoogle Scholar
  7. Bony S, R Colman, VM Kattsov, RP Allan, CS Bretherton, JL Dufresne, A Hall, S Hallegate, MM Holland, WJ Ingram, DA Randall, BJ Soden, G Tselioudis, MJ Webb (2006) How well do we understand and evaluate climate change feedback processes? J. Climate 19: 3445–3482CrossRefGoogle Scholar
  8. Broecker WS (1997) Thermohaline circulation, the Achilles heel of our climate system: Will man-made CO2 upset the current balance? Science 278: 1582–1588CrossRefGoogle Scholar
  9. Bryan F (1986) High-latitude salinity effects and interhemispheric thermohaline circulations. Nature 323: 301–304CrossRefGoogle Scholar
  10. Bryden HL, HR Longworth, SA Cunningham (2005) Slowing of the Atlantic meridional Overturning Circulation at 25° N. Nature 438: 655–657CrossRefGoogle Scholar
  11. Cayan DR (1992) Latent and sensible heat flux anomalies over the northern oceans: The connection to monthly atmospheric circulation. J. Climate 5: 354–369CrossRefGoogle Scholar
  12. Cheng W, PB Rhines (2004) Response of the overturning circulation to high-latitude fresh-water perturbations in the North Atlantic. Clim. Dyn. 22(4): 359–372CrossRefGoogle Scholar
  13. Cheng W, R Bleck, C Rooth (2004) Multi-decadal thermohaline variability in an ocean-atmosphere general circulation model. Clim. Dyn. 22: 573–590Google Scholar
  14. Collins M, B Sinha (2003) Predictability of decadal variations in the thermohaline circulation and climate. Geophys. Res. Lett. 30(6): 1413, doi:10.1029/2002GL016776CrossRefGoogle Scholar
  15. Collins M, A Botzet, A F Carril, H Drange, A Jouzea, M Latif, S Masina, OH Otteraa, H Pohlmann, A Sorteberg, R Sutton, L Terray (2006) Interannual to decadal climate predictability in the north Atlantic: A multimodel-ensemble study. J. Climate 19: 1195–1203CrossRefGoogle Scholar
  16. Cubasch U, GA Meehl, GJ Boer, RJ Stouffer, M Dix, A Noda, CA Senior, SCB Raper, and KS Yap (2001) Projections of future climate change. In JT Houghton, Y Ding, DJ Griggs, M Noguer, P Van der Linden, X Dai, K Maskell, CI Johnson (eds.) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 525–582Google Scholar
  17. Curry B, GP Lohmann (1982) Carbon isotopic changes in benthic foraminifera from the western South Atlantic: Reconstruction of glacial abyssal circulation patterns, Quat. Res. 18: 218–235CrossRefGoogle Scholar
  18. Curry R, C Mauritzen (2005) Dilution of the Northern North Atlantic Ocean in Recent Decades. Science 308 (5729): 1772–1774CrossRefGoogle Scholar
  19. Curry R, RR Dickson, I Yashayaev (2003) A change in the freshwater balance of the Atlantic Ocean over the past four decades. Nature 426: 826–829CrossRefGoogle Scholar
  20. Dahl K, A Broccoli, R Stouffer (2005) Assessing the role of North Atlantic freshwater forcing in millennial scale climate variability: A tropical Atlantic perspective. Clim. Dyn. 24(4): 325–346CrossRefGoogle Scholar
  21. Dai A, A Hu, GA Meehl, WM Washington, WG Strand (2005) Atlantic thermohaline circulation in a coupled general circulation model: unforced variations versus forced changes. J. Climate 18: 3270–3293CrossRefGoogle Scholar
  22. Delworth TL, KW Dixon (2000) Implications of the recent trend in the Arctic/N Atlantic Oscillation for the North Atlantic thermohaline circulation. J Climate 13: 3721–3727CrossRefGoogle Scholar
  23. Delworth TL, KW Dixon (2006) Have anthropogenic aerosols delayed a greenhouse gas-induced weakening of the North Atlantic thermohaline circulation? Geophys. Res. Lett. 33, LO2606, doi:10.1029/2005Glo24980CrossRefGoogle Scholar
  24. —Delworth TL, RJ Greatbatch (2000) Multidecadal thermohaline circulation variability driven by atmospheric flux forcing. J. Climate 13: 1481–1495CrossRefGoogle Scholar
  25. Delworth TL, ME Mann (2000) Observed and simulated multidecadal variability in the North Atlantic. Climate Dyn. 16 (9): 661–676CrossRefGoogle Scholar
  26. Delworth, TL, S Manabe, RJ Stouffer (1993) Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model. J. Climate 6: 1993–2011CrossRefGoogle Scholar
  27. Dickson RR, J Lazier, J Meincke, P Rhines, J Swift (1996) Long-term coordinated changes in the convective activity of the North Atlantic. Prog. Oceanogr. 38: 241–295CrossRefGoogle Scholar
  28. Dickson RR, I Yashayaev, J Meincke, W Turrell, S Dye, J. Holfort (2002) Rapid freshening of the deep North Atlantic over the past four decades. Nature 416: 832–837CrossRefGoogle Scholar
  29. Dong B, R Sutton (2005) Mechanism of interdecadal thermohaline circulation variability in a coupled ocean-atmosphere GCM. J. Climate 18: 1117–1135CrossRefGoogle Scholar
  30. Eden C, T Jung (2001) North Atlantic interdecadal variability: oceanic response to the North Atlantic oscillation (1865–1997). J. Climate 14: 676–691CrossRefGoogle Scholar
  31. Eden C, J Willebrand (2001) Mechanism of interannual to decadal variability of the North Atlantic circulation. J. Climate 14: 2266–2280CrossRefGoogle Scholar
  32. Gamiz-Fortis SR, D Pozo-Vazquez, MJ Esteban-Parra, Y Castro-Diez (2002) Spectral characteristics and predictability of the NAO assessed through Singular Spectral Analysis. J. Geoph. Res. 107(D23): 4685–4699CrossRefGoogle Scholar
  33. Goelzer H, J Mignot, A Levermann, S Rahmstorf (2006) Tropical versus high latitude freshwater influence on the Atlantic circulation. Clim. Dyn. 27(7–8): 715–725CrossRefGoogle Scholar
  34. Goosse H, T Fichefet, J-M Campin (1997) The effects of the water flow through the Canadian Archipelago in a global ice-ocean model. Geophysical Research Letters 24: 1507–1510, doi:10.1029/97GL01352CrossRefGoogle Scholar
  35. Gordon AL (1986) Inter-ocean exchange of thermocline water. J. Geophys. Res. 91: 5037–5046CrossRefGoogle Scholar
  36. Gregory JM, HT Banks, PA Stott, JA Lowe, MD Palmer (2004) Simulated and observed decadal variability in ocean heat content. Geophys. Res. Lett. 31: L15312, doi:10.1029/ 2004GL020258CrossRefGoogle Scholar
  37. Gregory JM, KW Dixon, RJ Stouffer, AJ Weaver, E Driesschaert, M Eby, T Fichefet, H Hasumi, A Hu, JH Jungclaus, IV Kamenkovich, A Levermann, M Montoya, S Murakami, S Nawrath, A Oka, AP Sokolov, and RB Thorpe (2005) A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys. Res. Lett. 32, L12703, doi:10.1029/2005GL023209CrossRefGoogle Scholar
  38. Haak H, J Jungclaus, T Koenigk, D Svein, U Mikolajewicz (2005) Arctic Ocean freshwater budget variability. ASOF Newsletter (3): 6–8. http://asof.npolar.no
  39. Häkkinen S (1999) Variability of the simulated meridional heat transport in the North Atlantic for the period 1951–(1993) J. Geoph. Res. 105(C5): 10, 911–11, 007Google Scholar
  40. Hasselmann K (1976) Stochastic climate models. Part I: Theory. Tellus 28: 473–485Google Scholar
  41. Higuchi K, JP Huang, A Shabbar (1999) A wavelet characterization of the North Atlantic oscillation variation and its relationship to the North Atlantic sea surface temperature. Int. J. Climatol. 19(10), 1119–1129CrossRefGoogle Scholar
  42. Hu A, GA Meehl (2005) Reasons for a fresher northern North Atlantic in the late 20th century. Geophys. Res. Lett. 32, doi:10.1029/2005GL022900Google Scholar
  43. Hughes TMC, AJ Weaver (1994) Multiple equilibria of an asymmetric two-basin model. J. Phys. Oceanogr. 24: 619–637CrossRefGoogle Scholar
  44. Hunt BG, TI Elliott (2006) Climatic trends. Clim. Dyn. 26: 567–585CrossRefGoogle Scholar
  45. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269: 676–679CrossRefGoogle Scholar
  46. Hurrell JW, H van Loon (1997) Decadal variations in climate associated with the North Atlantic Oscillation. Clim. Change 36: 301–326CrossRefGoogle Scholar
  47. Ingvaldsen RB, L Asplin, H Loeng (2004a) Velocity field of the western entrance to the Barents Sea. J. Geophys. Res. 109, C03021, doi:101029/2003JC001811CrossRefGoogle Scholar
  48. Ingvaldsen RB L Asplin, H Loeng (2004b) The seasonal cycle in the Atlantic transport to the Barents Sea during the years 1997–2001. Continent. Shelf Res. 24: 1015–1032CrossRefGoogle Scholar
  49. Johannessen, JA, PY Le Traon, I Robinson, K Nittis, MJ Bell, N Pinardi, P Bahurel (2006) Marine environment and security for the European area–Toward operational oceanography. Bull. Am. Met. Soc. 87(8): 1081CrossRefGoogle Scholar
  50. Jones PD, T Jonsson, D Wheeler (1997) Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int. J. Climatol. 17: 1433–1450CrossRefGoogle Scholar
  51. Jungclaus J, M Haak, H Latif, U. Mikolajewicz (2005) Arctic-North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J. Climate 18: 4013–4031CrossRefGoogle Scholar
  52. Knight, JR, RJ Allan, CK Folland, M Vellinga, and ME Mann (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett. 32, doi:10.1029/2005GL024233Google Scholar
  53. Knutti R, TF Stocker, F Joos, GK Plattner (2002) Constraints on radiative forcing and future climate change from observations and climate model ensembles. Nature 416: 719–723CrossRefGoogle Scholar
  54. Krahmann G, M Visbeck, G Reverdin (2001) Formation and propagation of temperature anomalies along the North Atlantic Current. J. Phys. Oceanogr. 31(5): 1287–1303CrossRefGoogle Scholar
  55. Kuzmina SI, L Bengtsson, OM Johannessen, H Drange, LP Bobylev, MW Miles (2005) The North Atlantic Oscillation and greenhouse-gas forcing. Geoph. Res. Let. 32(4), doi:10.1029/2005GL04703Google Scholar
  56. Large WG, AJG Nurser (2001) Ocean surface water mass transformations, pp 317–335. In G Siedler, J Church and J Gould (Eds) Ocean Circulation and Climate. Academic Press International Geophysics Series, 77, 715 pp.Google Scholar
  57. Latif M, E Roeckner, U Mikolajewicz, R Voss (2000) Tropical stabilisation of the thermohaline circulation in a greenhouse warming simulation. J. Climate 13: 1809–1813CrossRefGoogle Scholar
  58. Latif M, E Roeckner, M Botzet, M Esch, H Haak, S Hagemann, J Jungclaus, S Legutke, S Marsland, U Mikolajewicz, J. Mitchell (2004) Reconstructing, monitoring and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature. J. Climate 17: 1605–1614CrossRefGoogle Scholar
  59. Latif M, C Böning, J Willebrand, A Biastoch, J Dengg, N Keenlyside, Schweckendiek (2006) Is the themohaline circulation changing? J. Climate 19: 4632–4637Google Scholar
  60. Levermann AA, M Griesel, M Hofmann, M Montoya, S Rahmstorf (2005) Dynamic sea level changes following changes in the thermohaline circulation. Clim. Dyn. 24: 347–354CrossRefGoogle Scholar
  61. Maltrud ME, JL McClean (2005) An eddy resolving global ocean simulation. Ocean Model 8: 31–54CrossRefGoogle Scholar
  62. Mikolajewicz U, M Groger, E Maier-Reimer, G Schurgers, M Vizcaino and AME Winguth (2007) Long-term effects of anthropogenic CO2 emissions simulated with a complex earth system model. Clim Dyn., doi 10.1007/s00382–006-0204-yGoogle Scholar
  63. Manabe S, RJ Stouffer (1988) Two stable equilibria of a coupled ocean-atmosphere model. J. Climate 1: 841–866CrossRefGoogle Scholar
  64. Manabe S, RJ Stouffer (1993) Century-scale effects of increased atmospheric C02 on the ocean–atmosphere system. Nature 364: 215–218, doi:10.1038/364215a0CrossRefGoogle Scholar
  65. Manabe S, RJ Stouffer (1994) Multiple century response of a coupled ocean-atmosphere model to an increase of atmospheric carbon dioxide. J. Climate 7: 5–23CrossRefGoogle Scholar
  66. Manabe S, RJ Stouffer (1997) Coupled ocean-atmosphere model response to freshwater input: comparison with Younger Dryas event. Paleoceanography 12: 321–336CrossRefGoogle Scholar
  67. Marotzke J, J Willebrand (1991) Multiple equilibria of the global thermohaline circulation. J. Phys. Oceanogr. 21: 1372–1385CrossRefGoogle Scholar
  68. Mignot J, C Frankignoul (2005) On the variability of the Atlantic meridional overturning circulation, the NAO and the ENSO in the Bergen Climate Model. J. Climate 18: 2361–2375CrossRefGoogle Scholar
  69. Murphy JM, DMH Sexton, DN Barnett, GS Jones, MJ Webb, M Collins, DA Stainforth (2004) Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430: 768–772CrossRefGoogle Scholar
  70. Myers PG (2005) Impact of freshwater from the Canadian Arctic Archipelago on Labrador Sea Water formation. Geophys. Res. Lett. 32, L06605, doi:10.1029/2004GL022082CrossRefGoogle Scholar
  71. Oka A, H Hasumi (2006) Effects of model resolution on salt transport through northern high-latitude passages and Atlantic meridional overturning circulation. Ocean Model 13: 126–147CrossRefGoogle Scholar
  72. Osborn TJ (2004) Simulating the winter North Atlantic Oscillation: the roles of internal variability and greenhouse gas forcing. Clim. Dyn. 22: 605–623CrossRefGoogle Scholar
  73. Østerhus S, WR Turrell, S Jonsson and B Hansen (2005) Measured volume, heat and salt fluxes from the Atlantic to the Arctic Mediterranean. Geophys. Res. Lett. 32, L07603, doi:10.1029/2004GL022188CrossRefGoogle Scholar
  74. Ottera OH, H Drange, M Bentsen, NG Kvamsto, DB Jiang (2004) Transient response of the Atlantic meridional overturning circulation to enhanced freshwater input to the Nordic Seas-Arctic Ocean in the Bergen Climate Model. Tellus (A) 56(4): 342–361CrossRefGoogle Scholar
  75. Pain CC, MD Piggott, AJH Goddard, F Fang, GJ Gorman, DP Marshall, MD Eaton, PW Power, CRE de Oliveira (2005) Three-dimensional unstructured mesh ocean modelling. Ocean Model 10(1–2): 5–33CrossRefGoogle Scholar
  76. Rahmstorf S (1995) Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature 378: 145–149CrossRefGoogle Scholar
  77. Rahmstorf S (1996) On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clim. Dyn. 12: 799–811CrossRefGoogle Scholar
  78. Rahmstorf S (2003) Thermohaline Circulation: The current climate. Nature 421: 699CrossRefGoogle Scholar
  79. Rahmstorf S, A Ganopolski (1999) Long term global warming scenarios, computed with an efficient climate model. Clim. Change 43: 353–367CrossRefGoogle Scholar
  80. Rhines P, S Hakkinen (2003) Is the Oceanic heat transport in North Atlantic irrelevant to the climate in Europe? ASOF Newsletter #2: 13–17Google Scholar
  81. Ridley J, Huybrechts P, Gregory JM, Lowe JA (2005) Elimination of the Greenland ice sheet in a high CO2 climate. J. Climate 18: 3409–3427CrossRefGoogle Scholar
  82. Roberts MJ, RA Wood (1997) Topography sensitivity studies with a Bryan-Cox type ocean model. J. Phys. Oceanogr. 27: 823–836CrossRefGoogle Scholar
  83. Roberts, MJ, H Banks, N Gedney, J Gregory, R Hill, S Mullerworth, A Pardaens, G Rickard, R Thorpe, R Wood (2004) Impact of an eddy-permitting ocean resolution on control and climate change simulations with a global coupled GCM. J. Climate 17: 3–20CrossRefGoogle Scholar
  84. Schauer U, E Fahrbach, S Østerhus, G Rohardt (2004) Arctic warming through the Fram strait: Oceanic heat transports from 3 years of measurements. J. Geophys Res. 109, C06026, doi:10.1029/2003JC001823CrossRefGoogle Scholar
  85. Schiller A, U Mikolajewicz, R Voss (1997) The stability of the thermohaline circulation in a coupled ocean-atmosphere general circulation model. Clim. Dyn. 13: 325–347CrossRefGoogle Scholar
  86. Schmittner A, M Latif, B Schneider (2005) Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophys. Res. Lett. 32, doi:10.1029/2005GL024368Google Scholar
  87. Smith RD, ME Maltrud, FO Bryan, MW Hecht (2000) Numerical simulations of the North Atlantic Ocean at 1/10 degree. J. Phys. Oceanogr. 30: 1532–1561CrossRefGoogle Scholar
  88. Schneider von Deimling T, H Held, A Ganapolski, S Rahmstorf (2006) Climate sensitivity estimated from ensemble simulations of glacial climate. Clim. Dyn. 27: 149–163, doi:10.1007/s00382–006-0126–8CrossRefGoogle Scholar
  89. Stephenson DB, V Pavan, M Collins, MM Junge, R Quadrelli (2006) North Atlantic oscillation response to transient greenhouse gas forcing and the impact on european winter climate: a cmip2 multi-model assessment. Clim. Dyn. 27: 401–420CrossRefGoogle Scholar
  90. Stommel HM (1961) Thermohaline convection with two stable regimes of flow. Tellus 13: 224–230CrossRefGoogle Scholar
  91. Stouffer RJ, J Yin, JM Gregory, KW Dixon, MJ Spelman, W Hurlin, AJ Weaver, M Eby, GM Flato, H Hasumi, A Hu, J Jungclaus, IV Kamenkovich, A Levermann, M Montoya, S Murakami, S Nawrath, A Oka, WR Peltier, DY Robitaille, A Sokolov, G Vettoretti, N Weber (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Climate 19: 1365–1387CrossRefGoogle Scholar
  92. Swingedouw D, P Braconnot, O Marti (2006) Sensitivity of the Atlantic meridional overturning circulation to the melting from northern glaciers in climate change experiments. Geophys. Res. Lett. 33, L07711, doi:10.1029/2006GL025765CrossRefGoogle Scholar
  93. Thorpe, RB, JM Gregory, TC Johns, RA Wood, and JFB Mitchell (2001) Mechanisms determining the Atlantic thermohaline circulation response to greenhouse gas forcing in a non-flux-adjusted coupled climate model. J. Climate 14: 3102–3116CrossRefGoogle Scholar
  94. Timmermann, A, M Latif, RVA Grötzner (1998) Northern Hemisphere interdecadal variability: a coupled air-sea mode. J. Climate 11: 1906–1931Google Scholar
  95. Vellinga M (2004) Robustness of climate response in HadCM3 to various perturbations of the Atlantic meridional overturning circulation. Hadley Centre Technical Note CRTN 48, Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, United Kingdom (available via: URL http://www.metoffice.gov.uk/research/hadleycentre/pubs/HCTN/HCTN_48.pdf)
  96. Vellinga M, RA Wood (2004) Timely detection of anthropogenic change in the Atlantic meridional overturning circulation. Geophys. Res. Lett. 31, doi:10.1029/2004GL020306Google Scholar
  97. Vellinga M, RA Wood (2007) Impacts of thermohaline circulation shutdown in the twenty-first century. Clim. Change, doi:10.1007/s10584–006-9146-yGoogle Scholar
  98. Vellinga M, P Wu (2004) Low-latitude fresh water influence on centennial variability of the thermohaline circulation. J. Climate 17: 4498–4511CrossRefGoogle Scholar
  99. Vellinga M, RA Wood, JM Gregory (2002) Processes governing the recovery of a perturbed thermohaline circulation in HadCM3. J. Climate 15: 764–780CrossRefGoogle Scholar
  100. Wadley MR, GR Bigg (2002) Impact of flow through the Canadian Archipelago and Bering Strait on the North Atlantic and Arctic circulation: An ocean modelling study. Q. J. Roy. Met. Soc. 128: 2187–2203CrossRefGoogle Scholar
  101. Welander P (1982) A simple heat salt oscillator. Dyn. Atmos. Oceans 6: 233–242CrossRefGoogle Scholar
  102. Whitehead JA (1998) Topographic control of oceanic flows in deep passages and straits. Rev. Geophys. 36: 423–440CrossRefGoogle Scholar
  103. Wood RA, M Vellinga, R Thorpe (2003) Global warming and thermohaline circulation stability, Phil. Trans. R. Soc. Lond. (A) 361: 1961–1975CrossRefGoogle Scholar
  104. Wood RA, M Collins, J Gregory, G Harris, M Vellinga (2006) Towards a risk assessment for shutdown of the Atlantic Thermohaline Circulation. In HJ Schellnhuber et al. (eds.)‘Avoiding Dangerous Climate Change. Cambridge University Press, Cambridge, 392 pp.Google Scholar
  105. Wu P, RA Wood (2007) Convection-induced long term freshening of the Subpolar North Atlantic Ocean. Climate Dyn. submittedGoogle Scholar
  106. Wu P, RA Wood, P Stott (2004) Does the recent freshening trend in the North Atlantic indicate a weakening thermohaline circulation? Geophys. Res. Lett. 31, Lo2301, doi: 0.1029/ 2003GLO18584Google Scholar
  107. Wunsch C, P Heimbach (2006) Estimated decadal changes in the North Atlantic Meridional overturning circulation and heat flux 1993–2004. J. Phys. Oceanogr. 36: 2012–2024CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Michael Vellinga
    • 1
  • Bob Dickson
    • 2
  • Ruth Curry
    • 3
  1. 1.Met Office Hadley CentreUK
  2. 2.Centre for Environment, Fisheries and Aquaculture ScienceUK
  3. 3.Woods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations